Integration of scalar functions.
More...
|
real(rp) function | integ_scal_func (u, qdm) |
| Returns \( \int_O u(x) \dx \). More...
|
|
real(rp) function | integ_scal_fe (E, u, uh, X_h, qdm) |
| Returns \( \int_O E(x, u(x), u_h(x)) \dx \). More...
|
|
real(rp) function | integ_scal_fe_grad (E, phi, uh, X_h, qdm) |
| Returns \( \int_O E(x, \phi(x), \nabla u_h(x)) \dx \). More...
|
|
real(rp) function | integ_scal_fe_grad_2 (E, uh1, uh2, X_h, qdm) |
| Returns \( \int_O E(x, \nabla u1_h(x), \nabla u2_h(x)) \dx \). More...
|
|
Integration of scalar functions.
Definition at line 54 of file integral.F90.
◆ integ_scal_fe()
real(rp) function integral::integ::integ_scal_fe |
( |
procedure(r3xrxrtor) |
E, |
|
|
procedure(r3tor) |
u, |
|
|
real(rp), dimension(:), intent(in) |
uh, |
|
|
type(fespace), intent(in) |
X_h, |
|
|
type(quadmesh), intent(in) |
qdm |
|
) |
| |
|
private |
Returns \( \int_O E(x, u(x), u_h(x)) \dx \).
- \( E~: \R^3 \times \R \times \R \mapsto \R \)
- \(u~: \R^3 \mapsto \R \) is a scalar function,
- \( u_h~: \Omega \mapsto \R\) is a scalar finite element function in the finite element space \( X_h \)
(associated to a mesh \( \T \) with domain \( \Omega \)),
- 'qdm' = integration method on the mesh \( \T \),
- \( O \) is the integration domain, see quadmesh_mod for a definition.
Definition at line 193 of file integral.F90.
◆ integ_scal_fe_grad()
real(rp) function integral::integ::integ_scal_fe_grad |
( |
procedure(r3xr3xr3tor) |
E, |
|
|
procedure(r3tor3) |
phi, |
|
|
real(rp), dimension(:), intent(in) |
uh, |
|
|
type(fespace), intent(in) |
X_h, |
|
|
type(quadmesh), intent(in) |
qdm |
|
) |
| |
|
private |
Returns \( \int_O E(x, \phi(x), \nabla u_h(x)) \dx \).
- \( E~: \R^3 \times \R^3 \times \R^3 \mapsto \R \)
- \(\phi~: \R^3 \mapsto \R^3 \) is a vector function,
- \( u_h~: \Omega \mapsto \R\) is a scalar finite element function in the finite element space \( X_h \)
(associated to a mesh \( \T \) with domain \( \Omega \)),
- 'qdm' = integration method on the mesh \( \T \),
- \( O \) is the integration domain, see quadmesh_mod for a definition.
Definition at line 345 of file integral.F90.
◆ integ_scal_fe_grad_2()
real(rp) function integral::integ::integ_scal_fe_grad_2 |
( |
procedure(r3xr3xr3tor) |
E, |
|
|
real(rp), dimension(:), intent(in) |
uh1, |
|
|
real(rp), dimension(:), intent(in) |
uh2, |
|
|
type(fespace), intent(in) |
X_h, |
|
|
type(quadmesh), intent(in) |
qdm |
|
) |
| |
|
private |
Returns \( \int_O E(x, \nabla u1_h(x), \nabla u2_h(x)) \dx \).
- \( E~: \R^3 \times \R^3 \times \R^3 \mapsto \R \)
- \( ui_h~: \Omega \mapsto \R\) is a scalar finite element function in the finite element space \( X_h \)
(associated to a mesh \( \T \) with domain \( \Omega \)),
- 'qdm' = integration method on the mesh \( \T \),
- \( O \) is the integration domain, see quadmesh_mod for a definition.
Definition at line 702 of file integral.F90.
◆ integ_scal_func()
real(rp) function integral::integ::integ_scal_func |
( |
procedure(r3tor) |
u, |
|
|
type(quadmesh), intent(in) |
qdm |
|
) |
| |
|
private |
Returns \( \int_O u(x) \dx \).
- \( u \) = scalar function,
- 'qdm' = integration method on a mesh,
\( O \) is the integration domain, see quadmesh_mod for a definition.
Definition at line 81 of file integral.F90.
The documentation for this interface was generated from the following file: