Choral
Private Member Functions | List of all members
integral::integ Interface Reference

Integration of scalar functions. More...

Collaboration diagram for integral::integ:
Collaboration graph

Private Member Functions

real(rp) function integ_scal_func (u, qdm)
 Returns \( \int_O u(x) \dx \). More...
 
real(rp) function integ_scal_fe (E, u, uh, X_h, qdm)
 Returns \( \int_O E(x, u(x), u_h(x)) \dx \). More...
 
real(rp) function integ_scal_fe_grad (E, phi, uh, X_h, qdm)
 Returns \( \int_O E(x, \phi(x), \nabla u_h(x)) \dx \). More...
 
real(rp) function integ_scal_fe_grad_2 (E, uh1, uh2, X_h, qdm)
 Returns \( \int_O E(x, \nabla u1_h(x), \nabla u2_h(x)) \dx \). More...
 

Detailed Description

Integration of scalar functions.

Definition at line 54 of file integral.F90.

Member Function/Subroutine Documentation

◆ integ_scal_fe()

real(rp) function integral::integ::integ_scal_fe ( procedure(r3xrxrtor)  E,
procedure(r3tor)  u,
real(rp), dimension(:), intent(in)  uh,
type(fespace), intent(in)  X_h,
type(quadmesh), intent(in)  qdm 
)
private

Returns \( \int_O E(x, u(x), u_h(x)) \dx \).

  • \( E~: \R^3 \times \R \times \R \mapsto \R \)
  • \(u~: \R^3 \mapsto \R \) is a scalar function,
  • \( u_h~: \Omega \mapsto \R\) is a scalar finite element function in the finite element space \( X_h \)
    (associated to a mesh \( \T \) with domain \( \Omega \)),
  • 'qdm' = integration method on the mesh \( \T \),
  • \( O \) is the integration domain, see quadmesh_mod for a definition.

Definition at line 193 of file integral.F90.

◆ integ_scal_fe_grad()

real(rp) function integral::integ::integ_scal_fe_grad ( procedure(r3xr3xr3tor)  E,
procedure(r3tor3)  phi,
real(rp), dimension(:), intent(in)  uh,
type(fespace), intent(in)  X_h,
type(quadmesh), intent(in)  qdm 
)
private

Returns \( \int_O E(x, \phi(x), \nabla u_h(x)) \dx \).

  • \( E~: \R^3 \times \R^3 \times \R^3 \mapsto \R \)
  • \(\phi~: \R^3 \mapsto \R^3 \) is a vector function,
  • \( u_h~: \Omega \mapsto \R\) is a scalar finite element function in the finite element space \( X_h \)
    (associated to a mesh \( \T \) with domain \( \Omega \)),
  • 'qdm' = integration method on the mesh \( \T \),
  • \( O \) is the integration domain, see quadmesh_mod for a definition.

Definition at line 345 of file integral.F90.

◆ integ_scal_fe_grad_2()

real(rp) function integral::integ::integ_scal_fe_grad_2 ( procedure(r3xr3xr3tor)  E,
real(rp), dimension(:), intent(in)  uh1,
real(rp), dimension(:), intent(in)  uh2,
type(fespace), intent(in)  X_h,
type(quadmesh), intent(in)  qdm 
)
private

Returns \( \int_O E(x, \nabla u1_h(x), \nabla u2_h(x)) \dx \).

  • \( E~: \R^3 \times \R^3 \times \R^3 \mapsto \R \)
  • \( ui_h~: \Omega \mapsto \R\) is a scalar finite element function in the finite element space \( X_h \)
    (associated to a mesh \( \T \) with domain \( \Omega \)),
  • 'qdm' = integration method on the mesh \( \T \),
  • \( O \) is the integration domain, see quadmesh_mod for a definition.

Definition at line 702 of file integral.F90.

◆ integ_scal_func()

real(rp) function integral::integ::integ_scal_func ( procedure(r3tor)  u,
type(quadmesh), intent(in)  qdm 
)
private

Returns \( \int_O u(x) \dx \).

  • \( u \) = scalar function,
  • 'qdm' = integration method on a mesh,
    \( O \) is the integration domain, see quadmesh_mod for a definition.

Definition at line 81 of file integral.F90.


The documentation for this interface was generated from the following file: