Definition at line 155 of file feSpacexk_mod.f90.
◆ l2_dist_grad_2()
real(rp) function fespacexk_mod::l2_dist_grad::l2_dist_grad_2 |
( |
real(rp), dimension(:), intent(in) |
uh, |
|
|
type(fespacexk), intent(in) |
Y, |
|
|
type(quadmesh), intent(in) |
qdm, |
|
|
procedure(r3tor3) |
grad_u1, |
|
|
procedure(r3tor3) |
grad_u2, |
|
|
procedure(r3tor3), optional |
grad_u3 |
|
) |
| |
|
private |
Returns \( \left( \int_O \vert \nabla u - \nabla u_h \vert^2 dx \right)^{1/2} \).
- \( Y = [X_h]^d \) where \( X_h \) is a finite element space on the mesh \( \T \) which is of dimension \( d \).
- \( u~: \R^3 \mapsto \R^d \) is a vector function,
- \( \nabla u~: \R^3 \mapsto \R^d \times \R^d\) is a matrix function, given by ite components:
\( \nabla u = [\nabla u_1, \nabla u_2]\) if \( d=2\)
\( \nabla u = (\nabla u_1, \nabla u_2, \nabla u_3]\) if \( d=3\)
where
\( u = [u_1, u_2]\) if \( d=2\)
\( u = [u_1, u_2, u_3]\) if \( d=3\)
- \( u_h\in Y^k \), \( u_h~: \Omega \mapsto \R^d\) is a vector finite element function
- 'qdm' = integration method on the mesh \( \T \),
- \( O \) is the integration domain, see quadmesh_mod for a definition.
Definition at line 514 of file feSpacexk_mod.f90.
The documentation for this interface was generated from the following file: