Choral
Private Member Functions | List of all members
fespacexk_mod::l2_dist Interface Reference

integral L2 distance More...

Collaboration diagram for fespacexk_mod::l2_dist:
Collaboration graph

Private Member Functions

real(rp) function l2_dist_2 (uh, Y, qdm, u_1, u_2, u_3)
 Returns \( \left( \int_O \vert u - u_h \vert^2 \dx \right) ^{1/2} \). More...
 

Detailed Description

integral L2 distance

Definition at line 152 of file feSpacexk_mod.f90.

Member Function/Subroutine Documentation

◆ l2_dist_2()

real(rp) function fespacexk_mod::l2_dist::l2_dist_2 ( real(rp), dimension(:), intent(in)  uh,
type(fespacexk), intent(in)  Y,
type(quadmesh), intent(in)  qdm,
procedure(r3tor)  u_1,
procedure(r3tor)  u_2,
procedure(r3tor), optional  u_3 
)
private

Returns \( \left( \int_O \vert u - u_h \vert^2 \dx \right) ^{1/2} \).

  • \( Y = [X_h]^d \) where \( X_h \) is a finite element space on the mesh \( \T \) which is of dimension \( d \).
  • \( u~: \R^3 \mapsto \R^d \) is a vector function, given by ite components:
    \( u = [u_1, u_2]\) if \( d=2\)
    \( u = [u_1, u_2, u_3]\) if \( d=3\)
  • \( u_h\in Y^k \), \( u_h~: \Omega \mapsto \R^d\) is a vector finite element function
  • 'qdm' = integration method on the mesh \( \T \),
  • \( O \) is the integration domain, see quadmesh_mod for a definition.

Definition at line 431 of file feSpacexk_mod.f90.


The documentation for this interface was generated from the following file: