56 real(RP),
dimension(3) :: res
57 real(RP),
dimension(3),
intent(in) :: x
59 res = (/1._rp, 0._rp, 0._rp/)
66 function one_r3(x)
result(res)
67 real(RP),
dimension(3),
intent(in) :: x
79 function emetric(x, u, v)
result(res)
80 real(RP),
dimension(3),
intent(in) :: x, u, v
83 res = dot_product( u, v )
104 function f_c0(t)
result(f)
107 real(RP),
intent(in) :: t
122 function f_c1(t)
result(f)
124 real(RP),
intent(in) :: t
126 real(RP),
parameter :: scal = 15._rp / 16._rp
134 f = f**2 - 2._rp*f + 1._rp
142 function f_c2(t)
result(f)
145 real(RP),
intent(in) :: t
147 real(RP) :: r, r3, r4, r5
156 f = 1._rp - 6._rp*r5 + 15._rp*r4 - 10._rp*r3
163 function f_c3(t)
result(f)
166 real(RP),
intent(in) :: t
168 real(RP) :: r, r4, r5, r6, r7
180 f = 1._rp + 20._rp*r7 -70._rp*r6 + 84._rp*r5 - 35._rp*r4
188 function f_c4(t)
result(f)
191 real(RP),
intent(in) :: t
193 real(RP) :: r, r5, r6, r7, r8, r9
205 f = 1._rp - 70._rp*r9 +315._rp*r8 - 540._rp*r7 + &
206 & 420._rp*r6 - 126._rp*r5
215 function f_c5(t)
result(f)
218 real(RP),
intent(in) :: t
220 real(RP) :: r, r2, r3, r4, r5
232 f = 2._rp * (1._rp-r)**6 * ( &
233 & 1._rp + 6._rp*r + 21._rp*r2 + &
234 & 56._rp*r3 + 126._rp*r4 + 252._rp*r5 )
real(rp) function, public f_c3(t)
C3 function with support [-1,1].
real(rp) function, public one_r3(x)
The function .
real(rp) function, public f_c2(t)
C2 function with support [-1,1].
PRE-DEFINED NUMERIC FUNCTIONS
real(rp) function f_c1(t)
C1 function with support [-1,1].
real(rp) function, dimension(3), public vector_field_e_x(x)
constant vector field
REAL NUMBERS PRECISION IN CHORAL: selects simple/double/quad
real(rp) function, public f_c5(t)
C5 function with support [-1,1].
real(rp) function, public f_c4(t)
C4 function with support [-1,1].
real(rp) function, public f_c0(t)
real(rp) function, public emetric(x, u, v)
Euclidian metric on : This is the isotropic homogeneous metric equal to the usual scalar product ...