Choral
|
Go to the source code of this file.
Functions/Subroutines | |
program | eigen_laplacian_2d |
Solves the Laplacian eigenvalue problem More... | |
subroutine | pmv_m (y, x) |
Matrix-vector product x –> M*x. More... | |
subroutine | kinv_pcg (y, ierr, x) |
subroutine | kinv_mumps (x, ierr, y) |
subroutine | residual () |
program eigen_laplacian_2d | ( | ) |
Solves the Laplacian eigenvalue problem
\(~~~~~ -\Delta u = \lambda u ~~~\) on \(~~~ \Omega= [0,1]^2 \)
with homogeneous Neumann boundary conditions.
Discretisation: finite element method on \( X_h \subset {\rm H}^1(\Omega) \)
we get the symmetric and generalised eigen-problem: \(~~~~ S U = \lambda \, M U \)
Method:
Charles PIERRE, October 2020.
Definition at line 33 of file eigen_Laplacian_2D.f90.
subroutine eigen_laplacian_2d::kinv_mumps | ( | real(rp), dimension(:), intent(inout) | x, |
logical, intent(out) | ierr, | ||
real(rp), dimension(:), intent(in) | y | ||
) |
Definition at line 307 of file eigen_Laplacian_2D.f90.
subroutine eigen_laplacian_2d::kinv_pcg | ( | real(rp), dimension(:), intent(inout) | y, |
logical, intent(out) | ierr, | ||
real(rp), dimension(:), intent(in) | x | ||
) |
Definition at line 293 of file eigen_Laplacian_2D.f90.
subroutine eigen_laplacian_2d::pmv_m | ( | real(rp), dimension(:), intent(out) | y, |
real(rp), dimension(:), intent(in) | x | ||
) |
Matrix-vector product x –> M*x.
Definition at line 283 of file eigen_Laplacian_2D.f90.
subroutine eigen_laplacian_2d::residual | ( | ) |