Optimal preconditioning for the bidomain model

$Charles \ {\rm Pierre}$

Laboratoire de Mathématiques Appliquées de Pau,

Université de Pau et des pays de l'Adour

Ottawa, May 2014

æ

(日)、

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Optimal preconditioning

The bidomain model

Bidomain model preconditioning

Numerical results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Section 1

Optimal preconditioning

General problem

• We have to solve a linear problem,

$$Ax = b$$
,

of large size $N \gg 1$ (N is the size of the matrix A).

 we search for a numerical method that optimises the resolution cost as,

$$N \longrightarrow +\infty$$
.

• **Definition.** If we have :

method cost =
$$O(f(N))$$
,

we say that : "f is the complexity of the method", (relatively to N and as $N \longrightarrow +\infty$).

Precisions on the problem Ax = b

- The matrix A comes from the discretusation of a PDE :
 - A is sparse,
 - the matrix vector product,

 $x \longrightarrow Ax$,

has a **linear complexity**, i.e. O(N).

- We resort to iterative solvers :
 - each iteration of the solver has a O(N) complexity,
 - global cost = O(Iteration number $\times N)$,
 - **HERE : optimal complexity** = O(N) (i.e. linear).
- As $N \longrightarrow +\infty$, the mesh size $h \longrightarrow 0$:
 - Cond(A) $\longrightarrow +\infty$ as $N \longrightarrow +\infty$,
 - ▶ it implies that iteration number $\longrightarrow +\infty$ as $N \longrightarrow +\infty$, in absence of preconditioning.

Precisions on the problem Ax = b

- Assumption : the matrix A is Symmetric Positive Definite, a standard iterative solver then is the **Preconditioned Conjugate Gradient** algorithm.
- To solve the preconditioned system,

PAx = Pb, P := preconditioner,

the PCG algorithm performs at each iteration :

- ▶ 1 product $x \longrightarrow Ax \implies O(N)$ complexity,
- ▶ 1 product $x \longrightarrow Px \implies O(N)$ complexity,
- other less significant operations (2 scalar products, ...).
- **Proposition.** Let $\kappa = \text{Cond}(PA)$, then :

iteration number $= O(\kappa^{1/2})$ as $\kappa \longrightarrow +\infty$.

Corollary. Optimal complexity is reached if we can bound κ independently of N (i.e. of the mesh size).

Illustartion 1 : elliptic problems

• Consider the Poisson problem,

$$-\Delta u = f,$$

- following some classical discretisation method,
- on a space grid of size h,
- we have to solve,

$$Ax = b.$$

• **Property** : Cond(A) = $O(h^{-2})$.

Elliptic equations \implies complexity = $O(h^{-1}N)$.

dim	without preconditioning	optimal							
1	N^2	Ν							
2	$N^{1+1/2}$	Ν							
3	$N^{1+1/3}$	N							

• Complexity, in terms of N :

Illustartion 1 : elliptic problems

• Consider the Poisson problem,

$$-\Delta u=f,$$

- following some classical discretisation method,
- on a space grid of size h,
- we have to solve,

$$Ax = b.$$

• **Property** : $Cond(A) = O(h^{-2})$.

Elliptic equations \implies complexity = $O(h^{-1}N)$.

• Complexity, in terms of *h* :

dim	without preconditioning	optimal		
1	h^{-2}	h^{-1}		
2	h ⁻³	h^{-2}		
3	h^{-4}	h ⁻³		
		4	「日本 4回 と 4 ヨ と 4 ヨ と -	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Illustartion 1 : elliptic problems

Counting the iteration number,

Illustartion 1 : elliptic problems

8 meshes from 6 600 to 850 000 nodes. 1000 Iteration number slope 1/2 -----100 No prec. — ICC(0) prec. 10 1 10000 100000 1e+0

Matrix size N

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Counting the iteration number,

Illustartion 1 : elliptic problems

8 meshes from 6 600 to 850 000 nodes. 1000 Iteration number slope 1/2 -----100 No prec. — ICC(0) prec. 10 1 10000 100000 1e+0

Matrix size N

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Illustartion 1 : elliptic problems

- Counting the iteration number,
- 8 meshes from 6 600 to 850 000 nodes.

N	6 600	105 000	850 000
no prec., inversion CPU	4.10 ⁻²	4.8	208
H-matrix prec., inversion CPU	4.10 ⁻³	0.12	1.2
H-matrix prec., assembling CPU	7.10^{-2}	1.7	17.2

Illustartion 2 : parabolic problems

• Consider the heat equation, $\partial_t u - \Delta u = 0$.

- descretisd for instantce using an implicit Euler time scheme,
- on a space/time grid of size h, Δ ,
- we have to solve at each time step n :

$$Au^{n+1}=b^n.$$

• **Property :** if $\Delta t = O(h)$ then $Cond(A) = O(h^{-1})$.

Parabolic equations \implies complexity = $O(h^{-1/2}N)$.

• Complexity, in terms of N :

dim	without preconditioning	optimal
1	$N^{1+1/2}$	N
2	$N^{1+1/4}$	N
3	$N^{1+1/6}$	N

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Illustartion 2 : parabolic problems

• Consider the heat equation, $\partial_t u - \Delta u = 0$.

- descretisd for instantce using an implicit Euler time scheme,
- on a space/time grid of size h, Δ ,
- we have to solve at each time step *n* :

$$Au^{n+1}=b^n.$$

• **Property :** if $\Delta t = O(h)$ then $Cond(A) = O(h^{-1})$.

Parabolic equations \implies complexity = $O(h^{-1/2}N)$.

• Complexity, in terms of *h* :

dim	without preconditioning	optimal
1	$h^{-1.5}$	h^{-1}
2	$h^{-2.5}$	h^{-2}
3	$h^{-3.5}$	h ⁻³

• Warning : number of time steps = O(1/h), the global complexity is multiplied by h^{-1} .

▲日 ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ●

Optimal preconditioners

- For elliptic and parabolic equations,
 - multigrid preconditioners,
 - Hierarchical preconditioners (H-Matrix),

are *nearly* optimal :

- solver complexity = $O(N \log(N)^{\alpha})$,
- preconditioner assembling/storage = O(N).
- References :
 - W. HackBush, Multi-Grid Methods and Applications
 - L. Grasedyck and W. Hackbusch, *Construction and Arithmetics of H-Matrices*

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Section 2

The bidomain model

The bidomain model purpose, 1/3

• Describes spreading of potential waves in the heart (2D slice) :

- First unknown v=transmembrane potential,
 - rest state, $v \simeq -90$ mV (in blue),
 - excited state, $v \simeq 50$ mV (in red),
 - propagation of sharp *depolarisation* wave fronts from rest to excited state.
- v is the difference between two potentials,

$$v = u_1 - u_e$$
 with $\begin{cases} u_e & \text{extra-cellular potential} \\ u_i & \text{intra-cellular potential} \end{cases}$

-50,9

-84.3

(日) (同) (日) (日)

-50,7

-84

• Second unknown *u_e=extra cellular potential*.

-51,0

-84 1

The bidomain model purpose, 3/3

• Describes body surface potential = electro-cardiogram (ECG).

٠

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Cellular modelling

• Models for the cellular transmembrane potential

$$v = u_1 - u_e,$$
 with : $\left\{egin{array}{cc} u_e & ext{extra-cellular potential} \ u_i & ext{intra-cellular potential} \end{array}
ight.$

• Equations,

$$\partial_t v = -I_{ion}(v, \mathbf{w}) + I_{stim}(x, t),$$

$$\partial_t \mathbf{w} = g(v, \mathbf{w}),$$

with,

•
$$\mathbf{w} \in \mathbb{R}^{p}$$
 = gating variable,

• $I_{stim}(x, t) =$ source term (stimulation).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Equations : at the heart scale

- Three unknowns : u_e extra cellular potential,
 - v transmembrane potential,
 - w gating variables.
- For simplicity :
- the heart is isolated,
 - the physical parameters are taken equal to 1, (excepting the conductivities).

Equations : at the heart scale

- Three unknowns : u_e extra cellular potential,
 - v transmembrane potential,
 - w gating variables.
- For simplicity :
- the heart is isolated,
 - the physical parameters are taken equal to 1, (excepting the conductivities).
- First equation : elliptic type, current balance,

$$\operatorname{div}(G_i \nabla u_i + G_e \nabla u_e) = 0.$$

- $G_{i,e} =$ conductivity tensor of the intra/extra cellular media,
- $G_{i,e}$ non isotropic and heterogeneous, they follow the heart fibers,
- $\operatorname{div}(G_i \nabla u_i)$ current from the intra to the extra cellular media.

Equations : at the heart scale

- Three unknowns : u_e extra cellular potential,
 - v transmembrane potential,
 - w gating variables.
- For simplicity :
- the heart is isolated,
 - the physical parameters are taken equal to 1, (excepting the conductivities).
- First equation : elliptic type, rewritten in u_e , v,

$$\operatorname{div}((G_i+G_e)\nabla u_e)+\operatorname{div}(G_i\nabla v)=0.$$

Equations : at the heart scale

- Three unknowns : u_e extra cellular potential,
 - v transmembrane potential,
 - w gating variables.
- For simplicity :
- the heart is isolated,
 - the physical parameters are taken equal to 1, (excepting the conductivities).
- First equation : elliptic type,

$$\operatorname{div}((G_i+G_e)\nabla u_e)+\operatorname{div}(G_i\nabla v)=0.$$

• Second equation : parabolic type,

$$\partial_t v - \operatorname{div}(G_i \nabla u_e) - \operatorname{div}(G_i \nabla v) = I_{stim}(x, t) - I_{ion}(v, \mathbf{w}).$$

Equations : at the heart scale

- Three unknowns : u_e extra cellular potential,
 - v transmembrane potential,
 - w gating variables.
- For simplicity :
- the heart is isolated,
 - the physical parameters are taken equal to 1, (excepting the conductivities).
- First equation : elliptic type,

$$\operatorname{div}((G_i+G_e)\nabla u_e)+\operatorname{div}(G_i\nabla v)=0.$$

• Second equation : parabolic type,

$$\partial_t v - \operatorname{div}(G_i \nabla u_e) - \operatorname{div}(G_i \nabla v) = I_{stim}(x, t) - I_{ion}(v, \mathbf{w}).$$

• Third equation = cellular model,

$$\partial_t \mathbf{w} = g(\mathbf{v}, \mathbf{w}).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Preconditioning the bidomain model : why?

- Mathematical nature of the model :
 - coupling of elliptic/parabolic type equations,
 - conditioning in $O(h^{-2})$ at the discrete level.

Preconditioning the bidomain model : why?

- Mathematical nature of the model :
 - coupling of elliptic/parabolic type equations,
 - conditioning in $O(h^{-2})$ at the discrete level.
- Particular case, equal anisotropy ratio : $G_i = \lambda G_e$:
 - the model reduces to a single parabolic equation,

$$\partial_t v - \operatorname{div}(G_m \nabla v) = I_{stim}(x, t) - I_{ion}(v, \mathbf{w}),$$

with $G_m = (G_i^{-1} + G_e^{-1})^{-1}$.

- > This simplified model is known as the monodomain model.
- Conditioning in $O(h^{-1})$ at the discrete level.
- General case :
 - one cannot get rid of the elliptic/parabolic nature of the model,
 - ▶ poor conditioning in $O(h^{-2})$ is inevitable.

Preconditioning the bidomain model : why?

- Mathematical nature of the model :
 - coupling of elliptic/parabolic type equations,
 - conditioning in $O(h^{-2})$ at the discrete level.
- Physiological nature of depolarisation :
 - stiffness in space and in time of the potential waves,
 - resort to (very) fine grids in space and in time.

2D numerical illustration :

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

▲日 ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ●

Preconditioning the bidomain model : why?

- Mathematical nature of the model :
 - coupling of elliptic/parabolic type equations,
 - conditioning in $O(h^{-2})$ at the discrete level.
- Physiological nature of depolarisation :
 - stiffness in space and in time of the potential waves,
 - resort to (very) fine grids in space and in time.
- Conclusion :

ill conditioning + fine space and time grids \implies high computational costs

Preconditioning the bidomain model : why?

Numerical illustration on a square :

- simulation of a (stiff) depolarisation wave,
- P^1 finite element + semi implicit Euler,
- 9 meshes from 6 600 to $1.7 \ 10^6$ nodes,
- counting the average iteration number for one time step inversion.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Preconditioning the bidomain model : why?

Numerical illustration on a square :

▲日 ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ●

Preconditioning the bidomain model : why?

Numerical illustration on a square :

Matrix size N

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Preconditioning the bidomain model : why?

Numerical illustration on a square :

•Average iteration number versus the mesh size N :

N	6 600	53 240	211 925	848 617
Monodomain, no prec.	17.9	24.1	32.5	44.5
Bidomain, no prec.	378	902	1604	2459

N	6 600	53 240	211 925	848 617
Monodomain, H-Mat prec.	3	3	3.3	4
Bidomain, H-Mat prec.	5	4.5	4	4.4

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Preconditioning the bidomain model : why?

Numerical illustration on a square :

• CPU ratio no prec./H-Mat prec. :

N	6 600	53 240	211 925	848 617
Monodomain	0.7	0.8	1.9	3.9
Bidomain	8.4	32.5	67	161

Section 3

Bidomain model preconditioning

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Discretisation

Continuous model,

$$\operatorname{div}((G_i+G_e)\nabla u_e) + \operatorname{div}(G_i\nabla v) = 0$$

 $\partial_t v - \operatorname{div}(G_i \nabla u_e) - \operatorname{div}(G_i \nabla v) = f(x, t, \mathbf{w}).$

• For *P^k* Lagrange finite element we denote :

- M the mass matrix,
- S_{α} the stiffness matrix relatively to the conductivity tensor G_{α} .
- Numerical scheme, for a semi implicit Euler time stepping :

$$(S_i + S_e)U_e^{n+1} + S_iV^{n+1} = 0$$

 $M\frac{V^{n+1}-V^n}{\Delta t} + S_i U_e^{n+1} + S_i V^{n+1} = F(\mathbf{W}^n, V^n, x, t^{n+1}).$

The linear problem

• To be solved at each time step,

$$A X^{n+1} = RHS^n. (1)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

• With :

$$A = \begin{bmatrix} S_1 + S_e & S_i \\ S_i & \frac{1}{\Delta t}M + S_i \end{bmatrix}, \quad X^{n+1} = \begin{bmatrix} U_e^{n+1} \\ V^{n+1} \end{bmatrix}.$$

• **Property**, *A* is symmetric positive definite.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Bidomain preconditioners

- K. Mardal, B. Nielsen, X. Cai and A. Tveito, An order optimal solver for the discretised bidomain equations Num. Linear Algebra. Appl. 2007.
- (2) L. Gerardo-Giorda, L. Mirabella, F. Nobile, M. Perego, A. Veneziani,

A model-based block-triangular preconditioner for the Bidomain system in electrocardiology JCP 2009.

(3) C. Pierre,

Preconditioning the bidomain model with almost linear complexity, JCP 2012.

Block Jacobi preconditioner

For the matrix $A = \begin{bmatrix} S_1 + S_e & S_i \\ S_i & \frac{1}{\Delta t}M + S_i \end{bmatrix}$,

Tveito et al. proposed in [1] the preconditioner,

$$P_J = \begin{bmatrix} (S_1 + S_e)^{-1} & 0 \\ 0 & \left(\frac{1}{\Delta t}M + S_i\right)^{-1} \end{bmatrix}.$$

- **Proposition 1.** *P_J* is an optimal preconditioner.
- Problem : $(S_1 + S_e)^{-1}$ and $(\frac{1}{\Delta t}M + S_i)^{-1}$ are unknown !
- Proposition 2. assuming that,
 - P_{ell} is an optimal preconditioner for $S_i + S_e$,
 - P_{para} is an optimal preconditioner for $\frac{1}{\Delta t}M + S_i$,

then $\overline{P_J} = \begin{bmatrix} P_{ell} & 0\\ 0 & P_{para} \end{bmatrix}$ is an optimal preconditioner for A.

The monodomain approximation

Denoting A_i = div(G_i∇·), A_e = div(G_e∇·), the bidomain model reformulates into,

$$\partial_t v - \mathcal{A} v = F(v, \mathbf{w}, x, t), \text{ with } \mathcal{A} = \left(\mathcal{A}_i^{-1} + \mathcal{A}_e^{-1}\right)^{-1}.$$

- A is the bidomain operator,
- \mathcal{A} is symmetric positive and coercive but non local.
- Monodomain model approximation : $\mathcal{A} \simeq \operatorname{div}(\mathcal{G}_m \nabla \cdot)$ with,

$$G_m = (G_i^{-1} + G_e^{-1})^{-1}.$$

A = div(G_m∇·) in case of equal anisotropy ratio,
 A ≠ div(G_m∇·) in general.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

The monodomain approximation

• Illustration (same test case as earlier on)

Activation times : bidomain vs monodomain

Block LU preconditioner

• The matrix
$$A = \begin{bmatrix} S_1 + S_e & S_i \\ S_i & \frac{1}{\Delta t}M + S_i \end{bmatrix}$$
, reads,
 $A = LU, \quad L = \begin{bmatrix} S_i + S_e & 0 \\ S_i & K \end{bmatrix}, \quad U = \begin{bmatrix} 1 & (S_i + S_e)^{-1}S_i \\ 0 & 1 \end{bmatrix}$

• K is the discretisation of the bidomain operator A,

$$K = \frac{M}{\Delta t} + \left(S_i^{-1} + S_e^{-1}\right)^{-1}$$

► *K* is symmetric positive definite,

• K^{-1} and K are full matrices in general.

• The monodomain approximation $\mathcal{A} \simeq \operatorname{div}(\mathcal{G}_m \nabla \cdot)$ suggests :

$$K \simeq K_m := \frac{M}{\Delta t} + S_m$$

with S_m the stiffness matrix relatively to $G_m = \left(G_i^{-1} + G_e^{-1}\right)^{-1}$.

・ロト・西ト・ヨト・ヨー シック

Block LU preconditioner

• We introduce the approximation $L \simeq L_m := \begin{bmatrix} S_i + S_e & 0 \\ S_i & K_m \end{bmatrix}$:

$$U^{-1} = \begin{bmatrix} 1 & -(S_i + S_e)^{-1}S_i \\ 0 & 1 \end{bmatrix}, \quad L_m^{-1} = \begin{bmatrix} (S_i + S_e)^{-1} & 0 \\ -K_m^{-1}S_i(S_i + S_e)^{-1} & K_m^{-1} \end{bmatrix}.$$

• The exact preconditionner P_{LU} is given by :

$$P_{LU} := U^{-1} L_m^{-1}$$
.

- **Problem** K_m^{-1} and $(S_i + S_e)^{-1}$ are unknown. Let :
 - P_{ell} a preconditioner for $S_i + S_e$,
 - P_{para} a preconditioner for K_m .
- In practice we will use the preconditionner $\left| \overline{P}_{LU} := \overline{U}^{-1} \overline{L}_m^{-1} \right|$,

$$\overline{U}^{-1} = \begin{bmatrix} 1 & -P_{ell}S_i \\ 0 & 1 \end{bmatrix}, \quad \overline{L}_m^{-1} = \begin{bmatrix} P_{ell} & 0 \\ -P_{para}S_iP_{ell} & P_{para} \end{bmatrix}.$$

Solving AX = Y in practice

• Each iteration of the PCG algorithm performs :

• One product
$$X \to AX = \begin{cases} 2 & \text{multiplication by } S_i \\ 1 & " & S_i + S_e \\ 1 & " & M \end{cases}$$

► One product
$$X \to \overline{P}_{LU}X = \begin{cases} 2 & \text{multiplication by } S_i \\ 2 & " & P_{ell} \\ 1 & " & P_{para} \end{cases}$$

• One needs to define the preconditioners P_{ell} and P_{para} :

- any preconditioner for elliptic or parabolic problems works,
- we will use H-Matrix preconditioner.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Section 4

Numerical results

The 2D test case

- Segmented medical image (CT Scan),
- horizontal slice of the torso,
- heterogeneous thorax and anisotropic heart (fibrous organisation),
- 2 stimulation sites per ventricle (endo cardium),
- Luo and Rudy II ionic model, χ =1500 cm⁻¹.

・ロト ・聞ト ・ヨト ・ヨト

The 2D test case

- Four meshes considered : from 140 000 to 1 250 000 nodes.
- Transmembrane potential depolarisation wave,

• extra-cellular potential field (same time instants),

The 2D test case

- Four meshes considered : from 140 000 to 1 250 000 nodes.
- Activation time and ECG recordings,

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

The 3D test case

- 1 cm³ cubic slab of tissue,
- $\bullet\,$ orthotropic anisotropy : horizontal fibres rotating of $90^\circ\,$ from top to bottom,
- central stimulation,
- Luo and Rudy II ionic model, χ =500 cm⁻¹,
- five meshes considered : from 500 to 1 250 000 nodes.

Activation times :

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Cost analysis

CPU dependence with the number N of nodes (Log/Log),

Cost analysis

• Log/Log growth rate of the CPU with N,

N	CPU	growth rate
143 053	1.57	
344 408	4.34	1.1
684 112	8.75	1.02
1 257 312	17.04	1.09

N	CPU	growth rate
497	$1.8 \ 10^{-3}$	
3 220	$4.2 \ 10^{-2}$	1.7
22 256	$4.9 \ 10^{-1}$	1.3
162 981	5.5	1.2
1 253 910	32.2	0.9

2D test case

3D test case

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Cost analysis

• Log/Log growth rate of the CPU with N,

N	CPU	growth rate
143 053	1.57	
344 408	4.34	1.1
684 112	8.75	1.02
1 257 312	17.04	1.09

N	CPU	growth rate
497	$1.8 \ 10^{-3}$	
3 220	$4.2 \ 10^{-2}$	1.7
22 256	$4.9 \ 10^{-1}$	1.3
162 981	5.5	1.2
1 253 910	32.2	0.9

2D test case

3D test case

• Average number of iterations in PCG algorithm,

N	Iterations		N	Iterations
143 053	3.0	4	.97	2.0
344 408	3.0	3	220	2.7
694 112	3.0	22	256	3.0
1 057 210	3.0	162	2 981	3.0
1 257 512	5.0	1 25	3 910	2.0

2D test case

3D test case

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Cost calibration

- Linear complexity has been observed : this is asymptotic, we don't know the constants,
- to provide results that can be compared with other results, we calibrate the cost.
- **Calibration** = measure of the cost in terms of matrix/vector multiplication by *A*.
- This is relevent because linear complexity makes this measurment independent on *N* (matrix size).

Inversion of
$$AX = Y \Leftrightarrow \left\{ egin{array}{cc} 50 \\ 80 \end{array}
ight.$$
 matrix/vector multiplication in $\left\{ egin{array}{c} 2D \\ 3D \end{array}
ight.$

Conclusion

• Even with linear complexity for the linear system inversion, the global simulation cost remains large.

• Consider the following precision criterion :

e := relative error on the activation times in L^2 norm.

e = O(h) here with h the mesh size (in space and time).

in terms of precision, the global cost is

$$cost(e) = e^{DIM+1}$$

 \rightarrow cubic complexity in 2D,

 \rightarrow bi-quadratic complexity in 3D.