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Abstract

The generalized Graetz problem refers to stationary convection-diffusion
in uni-directional flows. In this contribution we demonstrate the ana-
lyticity of generalized Graetz solutions associated with layered domains:
either cylindrical (possibly concentric) or parallel. Such configurations
are considered as prototypes for heat exchanger devices and appear in
numerous applications involving heat or mass transfer. The established
framework of Graetz modes allows to recast the 3D resolution of the
heat transfer into a 2D or even 1D spectral problem. The associated
eigefunctions (called Graetz modes) are obtained with the help of a
sequence of closure functions that are recursively computed. The spec-
trum is given by the zeros of an explicit analytical serie, the truncation
of which allows to approximate the eigenvalues by solving a polyno-
mial equation. Graetz mode computation is henceforth made explicit
and can be performed using standard softwares of formal calculus. It
permits a direct and mesh-less computation of the resulting solutions
for a broad range of configurations. Some solutions are illustrated to
showcase the interest of mesh-less analytical derivation of the Graetz
solutions, useful to validate other numerical approaches.
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Introduction

Parallel convective heat exchangers are relevant in many applicative contexts
such as heating/cooling systems [23], haemodialysis [9], as well as convective
heat exchangers [14]. A number of works devoted to parallel convective heat ex-
changers in simple two dimensional configurations [15, 16, 11, 12, 27, 24, 28, 25]
can be found to cite only a few, whilst many others can be found in a recent
review [6].

As quoted in [6] conjugate heat transfer are mixed parabolic/hyperbolic prob-
lems which makes them numerically challenging. In many applications the
ratio between the solid and fluid thermal conductances is high (larger than
one thousand in many cases). The convection is dominating, so that the ratio
of convection to diffusion effects provided by the so-called Péclet number is
very high (e.g. larger than 105 in [21, 20]). When dealing with such highly
hyperbolic situations, numerical convergence might be an issue. The increase
in computer power has permitted and popularized the use of direct numerical
simulations to predict heat exchanger performances [21, 20, 26, 7, 13]. The
derivation of analytical mesh-less reference solutions allows to evaluate the ac-
curacy and the quality of the discrete solutions, as done in [18, 8, 2, 17, 5]
in a finite-element framework. In most cases, it is interesting to validate the
numerical solution in simple configurations as well as being able to test the
solution quality for extreme values of the parameters, when rapid variations
of the temperature might occur in localized regions. However, few analytic
solutions are known, apart from very simplified cases. Namely, such analytic
solutions can be obtained for axi-symmetric configurations, when the longitu-
dinal diffusion has been neglected whilst assuming a parabolic velocity profile,
as originally studied by Graetz [10]. In this very special case, the Graetz prob-
lem maps to a Sturm-Liouville ODE class, and the resulting analytic solutions
can be formulated from hypergeometric functions, see [4] or for example [25].

In this contribution we introduce analytical generalized Graetz modes: in-
cluding longitudinal diffusion, for any regular velocity profile, and for general
boundary conditions. The derivation of the generalized Graetz modes follows
an iterative process that can be performed using a standard formal calculus
software. Then, section 1.1 sets notations (mainly for the cylindrical case) and
provides the physical context as well as the constitutive equations under study.
Section 1.2 gives the necessary mathematical background for the subject, with
an emphasis on most recent results useful for the presented analysis. Section
2.1 shows that discrete mode decomposition also holds for non-axi-symmetric
configuration. Section 2.3 gives the central result of this contribution regarding
the analyticity of the generalized Graetz modes. Finally section 3 illustrate
specific applications obtained with the method with explicit analytical com-
putations.
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1 Setting the problem

1.1 Physical problem

We study stationary convection-diffusion in a circular duct made of several
concentric layers (fluid or solid). The domain is set to Ω×(a, b) with (a, b) ⊂ R
an interval and Ω the disk with centre the origin and radiusR. The longitudinal
coordinate is denoted by z and cylindrical coordinates (r, ϕ) are used in the
transverse plane. Then Ω is split into m different compartments Ωj, j =
1 . . .m, either fluid or solid and centered on the origin: Ω1 is the disk of radius
r1 whereas Ωj, j ≥ 2, is the annulus with inner and outer radius rj−1 and rj
for a given sequence 0 < r1 < · · · < rm = R. Two such configurations are
depicted on Figure 1.
The physical framework is set as follows:

1. Velocity: v(r, ϕ, z) = v(r) ez with ez the unit vector along the z direc-
tion. We denote vj = v|Ωj

= vj(r) ez the restriction of the velocity to
compartment Ωj. In case this compartment is solid we have vj(r) = 0.
We make the mathematical assumption that each vj(r) is analytical,
though v(r) is allowed to be discontinuous at each interface.

2. Conductivity: k(r, ϕ, z) = k(r) and moreover k|Ωj
= kj > 0 is a constant.

Ω2

Ω1 v1 > 0

v2 = 0
z

r

Ω2

Ω1

Ω3

v1 = 0

v3 = 0

v2 > 0

v2 > 0

z

r

Figure 1: Two possible configurations. Above: fluid flowing inside a circular
tube with a solid wall. Below: fluid flowing inside an annulus between a solid
core and a solid external wall.

The general equation for stationary heat convection-diffusion reads

div(r,ϕ,z)

(
vT − k∇(r,ϕ,z)T

)
= 0.

With the assumptions we have made, it simplifies to

div(k∇T ) + k∂2
zT = v∂zT in Ω× (a, b), (1)
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where we denoted by div = div(r,ϕ) and ∇ = ∇(r,ϕ) the gradient and diver-
gence operators restricted to the transverse plane. The following boundary
conditions, either of Dirichlet or Neumann type, are considered

T = g(z) or k∇T = g(z) on ∂Ω× (a, b). (2)

1.2 Mathematical background

Problem reformulation Adding a supplementary vector unknown p : Ω→
R2, problem (1)-(2) has been reformulated in [18, 8, 2, 17] into a system of rwo
coupled PDEs of first order:

∂zΨ = AΨ with Ψ = (T,p) , A =

(
vk−1 −k−1div(·)
k∇· 0

)
,

on the space H = L2(Ω) × [L2(Ω)]2 and involving the differential operator
A : D(A) ⊂ H → H. The definition of the domain D(A) of the operator A
depends on the chosen Dirichlet or Neumann boundary condition.
For simplicity we briefly recall the properties of operatorA in the Dirichlet case,
as presented in [18, 8]. These properties have been extended to the Neumann
case in [17] and to the Robin case in [3]. For a Dirichlet boundary condition,
we set D(A) = H1

0(Ω)×Hdiv(Ω). Then A is self-adjoint with compact resolvent.
Apart from the kernel space K := kerA = {(0,p), p ∈ Hdiv(Ω), div p = 0} the
spectrum of A is composed of a set Λ of eigenvalues of finite multiplicity. It has
been shown in [18] that Λ decomposes into a double sequence of eigenvalues
λi,

−∞←≤ λi ≤ · · · ≤ λ1 < 0 < λ−1 ≤ · · · ≤ λ−i → +∞. (3)

We call upstream eigenvalues the positive eigenvalues {λi, i < 0} and
downstream eigenvalues the negative ones {λi, i > 0}. The associated
eigenfunctions (Ψi)i∈Z? form an orthogonal (Hilbert) basis of K⊥.

Eigenmodes Let us write Ψi = (Θi,pi) the eigenfunctions. Their vec-
tor component satisfies pi = k∇Θi/λi. It is important to understand that
Θi : Ω 7→ R only is the scalar component of the associated eigenfunction Ψi.
As a result the (Θi)i∈Z? are not eigenfunctions themselves, they are neither
orthogonal nor form a basis of L2(Ω). To clarify this distinction we refer to Θi

as an eigenmode associated with λi.
Eigenmodes can be directly defined through a generalized eigenvalue problem.
A function Θ : Ω → R is an eigenmode if Θ ∈ H1(Ω), k∇Θ ∈ Hdiv(Ω) and
their exists a scalar λ so that

div(k(r)∇Θ) + λ2k(r)Θ = λv(r)Θ on Ω, (4)

with Θ = 0 or ∇Θ ·n = 0 on ∂Ω depending on the considered Dirichlet or Neu-
mann boundary condition. In that situation, λ is an eigenvalue of A associated
with the eigenfunction Ψi = (Θ, k∇Θ/λ). As a consequence, the eigenmodes
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always are real functions since the operator A is symmetric.
The upstream and downstream eigenmodes have the following important prop-
erty (proved in [8]):

• The upstream eigenmodes {Θi, i < 0} form a (Hilbert) basis of L2(Ω).

• The downstream eigenmodes {Θi, i > 0} also form a basis of L2(Ω).

Problem resolution The problem (1)-(2) can be solved by separation of
variables. General solutions for non-homogeneous boundary conditions of
Dirichlet, Neumann or Robin type have been derived in [18, 8, 17, 2, 3]. Such
solutions are detailed in section 3. We simply recall their formulation for a
homogeneous Dirichlet boundary condition:

T (r, ϕ, z) =
∑
i∈Z?

ci(z)Θi(r, ϕ) eλiz.

The functions ci(z) are determined with the help of the eigenmodes, of the
boundary condition g(z) and of the inlet/outlet conditions. As an illustration,
we precise that derivation in two cases. In the case of a homogeneous boundary
condition g(z)=0 in (2), then ci(z) = ci ∈ R are constant scalars. On a semi-
infinite domain Ω × (0,+∞), the upstream coefficients are zero, ci = 0 for
i < 0, and

T (r, ϕ, z) =
∑
i∈Z+

ciΘi(r, ϕ) eλiz.

The coefficients ci for i > 0 are given by the inlet condition T i = T|z=0

T i =
∑
i∈Z+

ciΘi.

If the domain is finite, equal to Ω× (0, L), then the upstream coefficients are
no longer equal to zero, the upstream and downstream coefficients ci satisfy

T i =
∑
i∈Z+

ciΘi +
∑
i∈Z−

ciΘie
−λiL, T o =

∑
i∈Z+

ciΘie
λiL +

∑
i∈Z−

ciΘi,

where T o = T|z=L is the outlet condition.

2 Analyticity of the generalized Graetz modes

2.1 Series decomposition

To take advantage of the azimuthal symmetry of the physical problem we
perform the Fourier decomposition of the eigenmodes. Their Fourier series
expansion is composed by terms of the form T (r) cos(nϕ) or T (r) sin(nϕ). We
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prove here that we have a finite number of such terms and characterize T (r).
Let us introduce the operator ∆n

∆nf =
1

r

d

dr
(r

d

dr
f)− n2

r2
f.

Consider Θ an eigenmode associated with λ ∈ Λ and assume that Θ(r, ϕ) =
T (r) cos(nϕ) or Θ(r, ϕ) = T (r) sin(nϕ). Then T is a solution of the following
ODEs

λ2kjT + kj∆nT = λvjT, on (rj−1, rj), j = 1 . . .m, (5)

that are coupled with the transmission conditions

T (r−j ) = T (r+
j ) , kj

d

dr
T (r−j ) = kj+1

d

dr
T (r+

j ), j = 1 . . .m− 1. (6)

Lemma 1. For all λ ∈ C and all n ∈ N there exists a unique function
Tn,λ(r) : (0, R) → R that satisfies (5)-(6) together with the normalisation
condition

Tn,λ(r) ∼ rn as r → 0+. (7)

An eigenmode Θ associated with the eigenvalue λ decomposes as a finite sum
of terms of the form Tn,λ(r) cos(nϕ) or Tn,λ(r) sin(nϕ).
The eigenvalue set Λ decomposes in the Dirichlet case as

Λ =
⋃
n∈N

Λn, Λn = {λ ∈ C, Tn,λ(R) = 0} , (8)

and in the Neumann case as

Λ =
⋃
n∈N

Λn, Λn =

{
λ ∈ C,

d

dr
Tn,λ(R) = 0

}
(9)

Finally, if λ ∈ Λn, then the associated eigenmodes are Tn,λ(r) cos(nϕ) and
Tn,λ(r) sin(nϕ).

Proof of lemma 1. The well poseness of the function Tn,λ definition is obtained
by induction on the intervals [rj−1, rj]. Assume that Tn,λ is given on [rj−1, rj]
for some j ≥ 1. On [rj, rj+1] the ODE (5) is regular and has a space of
solution of dimension two, therefore Tn,λ is uniquely determined by the two
initial conditions (6).
Now on [0, r1]: the ODE (5) is singular at r = 0. The Frobenius method (see
e.g. [22]), with the assumption that v(r) is analytical on [0, r1], states that the
space of solutions is generated by two functions whose behavior near r = 0 can
be characterized:

• for n > 0, one solution is O(rn) at the origin and the second is O(r−n),

• for n = 0, one solution is O(1) at the origin and the second is O(log(r)),
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Therefore condition (7) ensures existence and uniqueness for Tn,λ.

Let Θ be an eigenmode for λ ∈ Λ. On each sub-domain Ωj, equation (4)
can be rewritten as

∆Θ =
1

kj

(
λvj(r)Θ− λ2Θ

)
.

Using the assumption that vj(r) is analytical on [rj−1, rj], elliptic regularity
properties imply that Θ ∈ C∞(Ωj). Moreover, since Θ ∈ H1(Ω) and k∇Θ ∈
Hdiv(Ω), it follows that Θ and k∇Θ·n are continuous on each interface between
Ωj and Ωj+1. We consider the Fourier series expansion for Θ

Θ =
∑
n∈Z

θn(r)e−inϕ.

Since Θ ∈ C∞(Ωj) we can differentiate under the sum to obtain

∆Θ =
∑
n∈Z

∆n (θn(r)) e−inϕ.

and so equation (4) ensures that each Fourier mode θn(r) satisfies the ODEs
(5). It also satisfies the transmission conditions (6) because of the continuity
of Θ and of k∇Θ ·n at each interface. We already studied the behavior of the
solution of (4) at the origin. Among the two possible behaviors characterized
by the Frobenius method, Θ ∈ H1(Ω) and ∇Θ ∈ L2(Ω) ensure that θn(r) =
O(r|n|). As a result we have θn(r) = α|n|T|n|,λ(r).
Finally, Θ being a real function, we can recombine the Fourier modes to get,

Θ =
∑
n≥0

β|n|Tn,λ(r) cos(nϕ) +
∑
n>0

γ|n|Tn,λ(r) sin(nϕ).

We also proved that each term Tn,λ(r) cos(nϕ) or Tn,λ(r) sin(nϕ) itself is an
eigenmode for λ which obviously are linearly independent. But each eigenvalue
λ ∈ Λ being of finite multiplicity, the sums above are finite.

2.2 Closure functions

Assuming the following decomposition:

Tn,λ(r) =
∑
p∈N

tn,p(r)λ
p, (10)

and formally injecting this expansion into problem (5) provides recursive rela-
tions on tn,p(r),

kj∆ntn,p + kjtn,p−2 = v(r)tn,p−1.

which allows an explicit analytical computation of the functions tn,p(r). We
prove in section 2.3 that such a decomposition exists. The functions tn,p are
called the closure functions. They are precisely defined in section 2.2.1 and
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their construction with the help of closure problems is given in section 2.2.2.

A consequence is that the spectrum in (8) and (9) are given by the zeros
of the following analytical series

Λ =
⋃
n∈N

Λn, Λn =

{
λ ∈ C,

∑
p∈N

cn,pλ
p = 0

}
, (11)

where the coefficients cn,p are given by cn,p = tn,p(R) in the Dirichlet case or

by cn,p =
d

dr
tn,p(R) in the Neumann case. In practice:

1. By truncating the series in equation (11) at order M , we can compute
approximate eigenvalues by searching the zeros of the polynomial in λ∑M

p=0 cn,pλ
p = 0.

2. If λ̄ is an approximate eigenvalue, the corresponding approximate eigen-
mode is

∑M
p=0 tn,p(r)λ̄

p.

For more simplicity we fix in the sequel the value of n ∈ N and denote
tn,p = tp and Tn,λ = Tλ.

2.2.1 Definition

We consider the ODEs, for j = 1 . . .m,

kj∆ntp + kjtp−2 = v(r)tp−1 on (rj−1, rj), (12)

together with the transmission conditions for j = 1 . . .m− 1,

tp(r
+
j ) = tp(r

−
j ), kj

d

dr
tp(r

+
j ) = kj+1

d

dr
tp(r

−
j ), (13)

and the normalisation condition at the origin,

lim
r→0

tp(r)

rn
= 0. (14)

Lemma 2. Setting t−1 = 0 and t0 = rn, then the closure functions (tp(r))p≥1

satisfying (12), (13) and (14) for p ≥ 1 are uniquely defined.

The proof is set-up by construction in section 2.2.2.

2.2.2 Construction

We assume that for some p ≥ 1, tp−2(r) and tp−1(r) are known. We hereby
derive tp(r). Let us first introduce the operators Fj for j = 1, . . .m, defined
for a function f

Fj[f ](r) := rn
∫ r

rj−1

1

x2n+1

∫ x

rj−1

yn+1f(y) dy dx, (15)





Analyticity of Generalized Graetz

which is the inverse of operator ∆n. We denote ψ1(r) = rn and ψ2(r) = r−n if
n > 0 or ψ2(r) = ln(r) if n = 0, that are the basis solution of ∆nf = 0. We
consider the right hand side fp−1

fp−1 :=
v

k
tp−1 − tp−2. (16)

Then on each compartment (rj−1, rj), tp(r) is solution of (12) and therefore
reads,

tp(r) = αjψ1(r) + βjψ2(r) + Fj[fp−1](r).

We finally show how to compute the constants αj and βj

First compartment [0, r1] Assume that tp−1 = O(rn) and fp−1 = O(rn) at
r=0, which is true for p = 1.
We get that F1[fp−1] = O(rn+2) and the normalisation condition (13) sets
α1 = β1 = 0. We then have,

tp(r) = F1[fp−1](r) on [0, r1]. (17)

It follows that tp = O(rn+2) = O(rn) and fp = O(rn).

Further compartments [rj, rj+1], j ≥ 1 We assume that tp(r) has been
computed on the compartment [rj−1, rj] and determine tp(r) on [rj, rj+1], j ≥ 1.

We clearly have Fj+1[f ](rj) = 0 and
d

dr
Fj[f ](rj) = 0. Then equation (13) at

rj reformulates as

αjψ1(rj) + βjψ2(rj) = tp(r
−
j )

αj
d

dr
ψ1(rj) + βj

d

dr
ψ2(rj) =

kj
kj+1

d

dr
tp(r

−
j ),

which equation has a unique solution since ψ1 and ψ2 form a basis for the
solutions of the homogeneous equation ∆nf = 0.

2.3 Series expansion of the eigenmodes

Our main result is the following.

Theorem 1. The functions Tn,λ satisfy,

Tn,λ(r) =
∑
p∈N

tn,p(r)λ
p, on [0, R]

d

dr
Tn,λ(r) =

∑
p∈N

d

dr
tn,p(r)λ

p, on [rj−1, rj], j = 1 . . .m,

where the (tn,p(r))p∈N are the closure functions introduced in the previous
section.
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Proof of theorem 1

We fix the value of n ∈ N and simply denote tn,p = tp and Tn,λ = Tλ.

Assume that the three functions Tλ(r),
d

dr
Tλ(r) and ∆nTλ(r) are analytical

for r ∈ [rj−1, rj] and λ ∈ C. We can write Tλ(r) =
∑

p≥0 sp(r)λ
p. The

derivation theorem imply that
d

dr
Tλ(r) =

∑
p≥0

d

dr
sp(r)λ

p and that ∆nTλ(r) =∑
p≥0 ∆nsp(r)λ

p. Injecting this in (5) shows the sp(r) satisfy (5). Similarly
the transmission and renormalisation conditions (6) (7) imply that the sp(r)
satisfy (13) (14). Uniqueness in lemma 2 then imply that sp(r) = tp(r).

Let us then prove that Tλ(r),
d

dr
Tλ(r) and ∆nTλ(r) are analytical for r ∈

[rj−1, rj] and λ ∈ C for all j = 1 . . .m. We proceed by induction.
Assume that this is true on [rj−1, rj]. Then the initial data λ → Tλ(rj)

and λ→ ∂rTλ(rj) are analytical. On [rj, rj+1], Tλ is the solution of the regular
ODE (5) that analytically depends on λ, r and whose initial conditions (6)
at rj also analytically depend on λ. Classical results on ODEs (see e.g. [1,
section 32.5]) state that Tλ(r) analytically depends on λ and r on [rj, rj+1].
This is also true for ∆nTλ since ∆nTλ = −λ2Tλ + λv/kTλ. Finally this is also

true for
d

dr
Tλ by integration.

It remains to prove the result for r ∈ [0, r1]. This is harder because of the
singularity at r = 0. The problem being local at r = 0, we can assume r1 ≤ 1.
We formally introduce the series,

Aλ(r) =
∑
p≥0

tp(r)λ
p, Bλ(r) =

∑
p≥0

d

dr
tp(r)λ

p, Cλ(r) =
∑
p≥0

∆ntp(r)λ
p.

Let us denote F [f ] = F1[f ] for F1[f ] defined in (15). We introduce F (i) =
F ◦ · · · ◦F the ith iterate of F . Let us define τi = F (i)[t0] for t0(r) = rn the 0th

closure function. It is easy to compute τi,

τi(r) = Kir
n+2i, K−1

i = 22ii!(i+ 1) . . . (i+ n). (18)

We consider the constant M = max(‖v/k‖∞, 1) ≥ 1.

Lemma 3. If r1 ≤ 1, then on [0, r1] we have,

|tp(r)| ≤ αp, | d

dr
tp(r)| ≤ αp, |∆ntp(r)| ≤ αp.

with αp = (2M)pKi−1 for p = 2i or p = 2i+ 1.

With definition (18) of the coefficientsKi, it is clear that the series
∑

p≥0 αpλ
p

converges over C. The three series Aλ(r), Bλ(r) and Cλ(r) therefore are nor-
mally converging for r ∈ [0, r1] and for λ in any compact in C. As a result the
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integration theorem implies that Bλ = ∂rAλ and Cλ = ∆nAλ. Relation (12)
ensures that Aλ satisfies (5) whereas relation (14) together with t0 = rn en-
sures that Aλ satisfies (7). Uniqueness in lemma 1 then implies that Aλ = Tλ.
This proves theorem 1 on [0, R] and ends this proof.

Proof of lemma 3. We will systematically use that r ≤ 1, that Ki and τi(r) in
(18) are decreasing and that the operator F satisfies,

h1 ≤ h2 ⇒ F [h1] ≤ F [h2], |F [h]| ≤ F [|h|].

With definitions (16)-(17) we have the upper bound,

|tp| ≤ F [|fp−1|] ≤M(F [|tp−1|+ F [|tp−2|).

By recursion, we obtain an upper bound involving the τi = F (i)(t0) of the form

|tp| ≤
∑
k

Mnkτmk
.

The number of terms in the sum is less than 2p. Index nk is smaller than p
and Mnk ≤Mp. The minimal value for mk is i if p = 2i or i+ 1 if p = 2i+ 1,
so that τmk

≤ τi or τmk
≤ τi+1 respectively. Therefore,

|tp| ≤
{

(2M)pKir
n+2i if p = 2i

(2M)pKi+1r
n+2(i+1) if p = 2i+ 1

,

which upper bound ensures the first inequality in lemma 3.
From that last inequality it is easy to check that |tp|+ |tp−1| ≤ 2(2M)pKir

n+2i

if p = 2i or p = 2i+ 1. For p = 2i or p = 2i+ 1 it follows that

fp = |∆ntp+1| ≤M (|tp|+ |tp−1|) ≤ (2M)p+1Kir
n+2i.

This gives the third inequality in lemma 3.
By differentiating (17) we get,

d

dr
tp+1(r) = nrn−1

∫ r

0

1

x2n+1

∫ x

0

yn+1fp(y) dy dx+
1

rn

∫ r

0

yn+1fp(y) dy

It follows that

| d

dr
tp+1(r)| ≤ (2M)p+1KiC,

with,

C = nrn−1

∫ r

0

1

x2n+1

∫ x

0

y2n+2i+1 dy dx+
1

rn

∫ r

0

y2n+2i+1 dy

≤ nrn−1

∫ r

0

1

x2n+1

∫ x

0

y2n dy dx+
1

rn

∫ r

0

y2n dy =
nrn + rn+1

2n+ 1
≤ 1,

implying the second inequality in lemma 3.
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2.4 Extension to planar configurations

We consider layered planar configurations as depicted on Figure 2. The trans-
verse coordinate perpendicular to the layers is denoted by x. The coordinate x
is homologue to the radial coordinate r in the cylindrical case. The origin is set
at the center so that −R ≤ x ≤ R with 2R the total thickness of the geometry.

Ω3

Ω2

Ω1

v3 > 0

v1 > 0

v2 = 0
z

y

x

Figure 2: Example of a planar configurations.

Actually, the results that we obtained for concentric cylindrical configurations
are easier to establish in the case of layered planar configurations. This is

because the operator ∆n :=
( d2

dx2
+n2

)
associated with the y-periodic decom-

position

Θ(x, y) =
∑
n≥0

Tn,λ(x) cos(n2πy) +
∑
n>0

Tn,λ(x) sin(n2πy),

is no more singular in Cartesian coordinates. Hence, the technical issues as-
sociated with the proof of analyticity in the variable λ for the functions Tλ,
dTλ/ dr and ∆nTλ are no longer present in this case. Furthermore, each step
of the proofs provided in sections 2.1 and 2.2 directly apply to the planar case,
so that theorem 1 also holds.

3 Exemples of applications

In this section we develop various exemples of solutions so as to illustrate
the versatility and usefulness of the previously presented theoretical results.
In section 3.1 we first give explicit general solutions adapted for two families
of geometries, i.e planar or cylindrical, for general boundary conditions. We
pursue towards illustrating interesting and relevant solutions considering two
idealyzed but non trivial configurations in the subsequent sections. In sec-
tion 3.2 we showcase how a localized heat source can lead to a ’hot spot’ of
temperature in its neibourghood, and illustrate how our mesh-less analytical
method can effectively capture the temperature peak. A second exemple is
provided in section 3.3 where we examine a double-pass configuration in the
planar framework for which, again, a localized heat source is imposed nearby
the origin.
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3.1 Explicit families of solutions

As in equation (2), we will consider symmetric boundary conditions (only
depending on z). Thus we will consider the spectrum Λ0 in definitions (8)-
(9) for n=0. In the Dirichlet case Λ0 = {λ ∈ C, T0,λ(R) = 0} and in the
Neuman case Λ0 = {λ ∈ C, dT0,λ/ dr(R) = 0}. The spectrum is computed
with the closure functions as in equation (11). It decomposes as in equation
(3): Λ0 = {λ+i, λ−i, i ∈ N?} with λ+i < 0 the upstream modes and λ−i > 0
the downstream modes. We will simply denote T±i = Tλ±i,0. Remember that
λ±i and T±i depend on the nature of the boundary condition (Dirichlet or
Neumann).

Dirichlet boundary condition

For the lateral Dirichlet boundary condition in equation (2), the temperature
solution are given in [2] for the cylindrical case

T (r, z) = g(z) +
∑
i∈Z?

αici(z)Ti(r) e
λiz,

with, denoting k the conductivity in the boundary annulus:

αi =
2πR

λ2
i

k
dTi
dr

(R).

This adapts to the parallel planar configuration with

αi =
k

λ2
i

(dTi
dr

(R) +
dTi
dr

(−R)
)

In both cylindrical and planar cases, the functions ci(z)eλiz are given by the
convolution between dg/ dz and the exponentially decaying modes

c−i(z) =

∫ +∞

z

g′(ξ)e−λ−iξ dξ, c+i(z) = −
∫ z

−∞
g′(ξ)e−λ+iξ dξ, (19)

for the upstream modes and downstream modes respectively.

Neumann boundary condition & non-equilibrated case

Consider now a Neumann boundary conditions (2) in the case where Q :=∫
Ω
v dx 6= 0, i.e. the total convective flux is not zero. Then from [2] the

solution reads

T (r, z) =
P

Q
G(z) +

∑
i∈Z?

αici(z)Ti(r) e
λiz, (20)

with G(z) =
∫ z
−∞ g(ξ)dξ the primitive of the heat source g(z) and P the

perimeter of the external cylinder. Note that the temperature indeed is defined
up to an additive constant that has been fixed by setting T−∞ = 0 here.
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For the cylindrical configuration, we choose a Poiseuille velocity profile v(r) =
Pe(1−(r/r0)2), where Pe is the Péclet number that quantifies the ratio between
convection and diffusion (here based on the maximal velocity in the tube). We
have P/Q = 4R/(Per2

0) and

αi =
2πR

λi
Ti(R). (21)

Whereas, for parallel planar configurations:

αi =
1

λi

(
Ti(R) + Ti(−R)

)
. (22)

In both cases, the functions ci(z)eλiz are given by the convolution between the
imposed flux at the boundary and the exponentially decaying modes

c−i(z) =

∫ +∞

z

g(ξ)e−λ−iξ, c+i(z) = −
∫ z

−∞
g(ξ)e−λ+iξ dξ, (23)

for the upstream modes and downstream modes respectively.

Neumann boundary condition & equilibrated case

Consider now a Neumann boundary conditions (2) in the case where the total
convective flux cancels out: Q :=

∫
Ω
v dx = 0 . This is the case of an equili-

brated exchanger. In this case, the solution displays a distinct form (see [2])
involving the (adiabatic) kernel T0 solution of

div(k∇T0) = v , ∇T0 · n|R = 0. (24)

In the section 3.3 we will consider an exemple of such a configuration for which
we will give an explicit solution of the kernel T0. In general form, the complete
solution associated with equilibrated case Q = 0, reads

T (r, z) = aG(z) +G(z)(aT0 + b) +
∑
i∈Z?

αici(z)Ti(r) e
λiz, (25)

with G(z) =
∫ z
−∞G(ξ)dξ, the second primitive of the heat source g(z), αi

and ci(z) again given by (20) and (23) and where a and b are two constants
characterizing the heat exchange with values detailed below. Note that for
this configuration the temperature field is defined up to C1(z + T0) + C2, see
details in [2].
In cylindrical configuration the parameters a and b are given by

a =
R∫ R

0
(vT0 − k)r dr

, b =
a2

R

∫ R

0

(2k − vT0)T0r dr + a T0(R) (26)

whereas for parallel planar configuration the parameters a and b read

a =
2∫ R

0
(vT0 − k) dr

, b =
a2

2

∫ R

−R
(2k − vT0)T0 dr + a(T0(−R) + T0(R))/2.

(27)
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3.2 Locally heated pipe & non-equilibrated case Q 6= 0

We illustrate the use of explicit computation of the eigenmode decomposi-
tion, through the recursive relations (12) and (13), in a simple and clas-
sical configuration: sometimes referred to as ’generalized Graetz’ configura-
tion. Two concentric cylinders are thus considered. A central one, for which
r ∈ [0, r0] and whereby the fluid convects the temperature, and an external
one, r ∈ [r0, R] where temperature conduction occurs. The dimensionless axi-
symmetric longitudinal velocity v(r) inside the inner cylinder is chosen such
as v(r) = Pe(1− (r/r0)2), where Pe is the Péclet number which quantifies the
ratio between convection and diffusion. The domain dimensions are r0 = 1
and R = 2. The conductivity is set to k = 1. The solution is defined up to
an additive constant that is fixed by setting T−∞ = 0. A Neumann boundary
condition k∇T = g(z) is set. The applied boundary condition is chosen so as
to present a localyzed (and regular) heat flux nearby the origin, with z0 = 1/2
here:

g(z) = 1− cos(2π(z − z0))) for z ∈ [z0 − 1/2, z0 + 1/2], (28)

and g(z) = 0 otherwise. With these conditions, a simple balance on the domain
allows to compute T+∞:

T+∞ =
2πR

∫ +∞
−∞ g(z) dz

2π
∫ r0

0
v(r)r dr

=
4R

Pe r0

∫ 1

0

g(z) dz,

so that T+∞ = 8/Pe here. Using Neumann boundary condition (28) and
equation (20) one is able to provide a mesh-less explicit analytical solution
for the temperature, illustrated in Figure 3 for various values of Pe varying
between 100 to 0.1 so as to show-case the drastic effect of convection on the
temperature profiles. Figure 3a exemplifies that, when convection dominates
in the centerline r = 0, the effect of the heat source nearby the origin is
weak. The local temperature is almost zero at r = 0 for z ∈ [−1, 0], since the
prescribed temperature at z → −∞ is zero. Nevertheless, a slight tilt of the
centerline temperature profile is noticeable as z > 0 so that it barely reaches
the non-zero asymptotic downstream constant temperature T+∞ at z = 10.
On the contrary to the centerline profile, the wall profile at r = R displays
a strong deflection with a maximum located at the heat source maximum
z = 1/2, and both upstream and downstream decay from this maximum.
The typical downstream decay length is related to the convection ability to
transport the heat flux downstream. Hence the larger the Péclet, the longer
the downstream decay length. The upstream decay length, on the contrary
both depends on the solid conduction and the wall radius. In the case of
small solid walls thickness, some asymptotic behavior have been documented
[19]. The other radially intermediate temperature profiles shown in Figure 3a
display a medium behavior between the centerline and the wall profile. The
closer to the outer cylinder wall, the closer the temperature peak to the wall
profile. Figures 3b, 3c and 3d display the effect of decreasing the convection
on the temperature profile.
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Temperature profiles inside a cylinder
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Figure 3: Temperature profiles at various radial distances from center r = 0 to
solid edge r = R and for various Péclet numbers. An identical scaling in z has
been set to focus on the heated region (dashed vertical lines). Away from the
heated region, the temperature exponentially goes to T−∞ = 0 when z → −∞
and to T+∞ as z → +∞.
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From one hand, these profiles display smoother and smaller peaks at the
heat source as convective effects are weakened. On the other hand, the profiles
are increasingly non-symetric at smaller Péclet numbers, with an increasing
downstream temperature T+∞ = 8/Pe.

3.3 Parallel configuration & equilibrated case Q = 0

Here we consider a parallel planar geometry in a double-pass configuration for
which the upper fluid is re-injected into the lower one at one end as in [12]. An
exchanger with total thickness 2R is considered. A fluid is flowing for |x| ≤ x0

surrounded by solid walls for x0 ≤ |x| ≤ R. We consider the zero total flux for
which the upper fluid is convected along +z direction for x ∈ [0, x0], and on
the opposite one for x ∈ [−x0, 0]. Within [−x0, x0], the velocity profile reads

v(x) = 6 σ(x) Pe
|x|
x0

(
1− |x|

x0

)
, (29)

σ(x) being the sign of x, with Péclet number Pe = v̄x0/D (built from the
average velocity v̄ =

∫ x0
0
v dx/x0, x0 the fluid channel half-gap and the diffu-

sivity D). At x = ±R, adiabatic conditions are prescribed, (i.e ∇T · n|R = 0)
for |z| > 1/2 whereas the flux (28) (with zo = 0 here) is imposed for z ∈
[−1/2, 1/2]. In this case the adiabatic kernel T0 solution of (24) is given by:
for |x| ≤ x0

T0(x) = −σ(x)Pe
x

2x2
0

(
x3 − 2x2x0 + 2x3

0

)
− σ(x)Pe

x2
0

2
, (30)

whereas for |x| ≥ x0

T0(x) = −σ(x)Pex2
0/2. (31)

The two constants a and b defined in (27) read

a = − 35

13Pe2x3
0 + 35R

, b = 0. (32)

Figure 4 illustrates the temperature profiles along the longitudinal direction z
at various transverse heights x, either in the center of the channel (x = 0), at
the interface between the liquid and the solid (x = x0) or at the solid exterior
edge (x = R). One can observe that the “hot-spot” temperature located very
close at z = 0 at the surface x = R, is weakly affected by the increase of the
Péclet number expect for small Péclet (where one has to translate back the
reference temperature chosen at ±∞, so as to obtain true physical “hot-spot”
temperature). Nevertheless, further-down inside the solid the temperature rise
is weakened by increasing fluid convection, as expected. Also, convection drops
down the outlet temperature, as expected from heat-flux balance argument.
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Temperature profiles inside a parallel channel
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Figure 4: Temperature profile inside a parallel channel with counter-current flow (29)
along z. A heat source term (28) is located within z ∈ [−1/2, 1/2] (dotted lines).
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4 Conclusion

This contribution has provided the mathematical proof, as well as the effective
algorithmic framework for the computation of generalized Graetz mode decom-
position in cylindrical or parallel configurations. We have shown that, in these
special configurations, the Graetz functions analyticity enables mesh-less ex-
plicit computation of the steady-state temperature even when boundary condi-
tion with source terms are considered. The method has been illustrated in two
complementary cases (cylindrical/non equilibrate and parallel/equilibrated) in
order to showcase its various aspects.

5 Appendix

5.1 Cylindrical heated pipe case Q 6= 0

The solution provided by (20) is

T (r, z) =
8

Pe
G(z) +

∑
i∈Z?

αici(z)Ti(r) e
λiz, (33)

Rewritting (28) as

g(z) = H(z)H(1− z)

(
1− cos(2π(z +

1

2
))

)
with H(z) the Heaviside function, and using integration by parts leads to the
primitive G(z) =

∫ z
−∞ g(z′)dz′ equals to

G(z) = H(z)H(1− z)

(
z − 1

2π
sin(2π(z +

1

2
))

)
.

The function ci(z) in (33) are given by (23), the integration by part of which
gives

c+i(z) = g(z)
e−λiz

λi
+
H(1− z)

λ2
i + 4π2

(
λ

2π
sin(2πz) + cos(2πz)

)
.

The eigenfunctions Ti are provided by the λ-analytical decomposition (10)
upon functions tp(r) such that

Ti(r) =

Np∑
p=0

tp(r)λ
p
i , (34)

where each eigenvalue λi of the discrete spectrum sets its eigenfunctions Ti
from (34). We hereby provide the first three elements of both dowstream and
upstream spectrum computed with a finite truncation of Np = 20 in (34) and
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parameter Pe = 1, with a formal calculus Maple software: λ1 = 0.674240,
λ2 = 3.306258, λ3 = 4.936416, λ−1 = 0, λ−2 = −1.027741, λ−3 = −2.35726.
Function tp(r), p ∈ {0, 5} are also hereby given by the following piecewise
continuous analytical functions of r along the fluid-solid domains r ∈ [0, 1] ∪
[1, 2] {

r∈[0,1] t0 = 1

r∈[1,2] t0 = 1
r∈[0,1] t1 = − 5

8
r4 + 5/2 r2

r∈[1,2] t1 =
15

8
+

5

2
ln (r)

r∈[0,1] t2 = − 1

4
r2 +

25 r4

16
− 125 r6

144
+

25 r8

256

r∈[1,2] t2 =
1825

2304
− r2

4
+

175 ln (r)

96{
r∈[0,1] t3 = − 5 r4

16
+ 25 r6

48
− 875 r8

2304
+ 445 r10

4608
− 125 r12

18432

r∈[1,2] t3 = − 4385
18432

+ 5 r2

32
+

155 ln(r)
4608

− 5
8
r2 ln(r)

(35)

{
r∈[0,1] t4 = r4

64
− 25 r6

192
+ 1325 r8

9216
− 839 r10

9216
+ 10975 r12

331776
− 3175 r14

602112
+ 625 r16

2359296

r∈[1,2] t4 = − 319528919
1040449536

+ 2375 r2

9216
− 847715 ln(r)

3096576
+ r4

64
− 175 r2 ln(r)

384{
r∈[0,1] t5 = 5 r6

384
− 95 r8

3072
+ 575 r10

18432
− 3755 r12

221184
+ 51755 r14

8128512
− 779375 r16

520224768
+ 3201125 r18

18728091648
− 125 r20

18874368

r∈[1,2] t5 = − 2789680345
74912366592

+ 5005 r2

73728
− 9747175 ln(r)

231211008
− 15 r4

512
− 155 r2 ln(r)

18432
+

5 r4 ln(r)
128

Finally, each parameter αi of (33) is given by (22) using the closure function
Ti(R = 2) and its corresponding eigenvalue λi.

5.2 Parallel configuration & equilibrated case Q = 0

The theoretical solution detailed in section 3.1 is hereby detailled. From (25)
we recall the temperature solution

T (r, z) = aG(z) + g(z)aT0 +
∑
i∈Z?

αici(z)Ti(r) e
λiz, (36)

involving the constant a given in (32) and the function g(z) given in (28).
Rewritting (28) as

g(z) = H(z)H(1− z)

(
1− cos(2π(z +

1

2
))

)
,

with H(z) the Heaviside function, and using integration by parts leads to a
primitive G(z) =

∫ z
−∞ g(z′)dz′ equals to

G(z) = H(z)H(1− z)

(
z − 1

2π
sin(2π(z +

1

2
))

)
.
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Again, the functions ci(z) are given by (23), the integration by part of which
gives

c+i(z) = g(z)
e−λiz

λi
+
H(1− z)

λ2
i + 4π2

(
λ

2π
sin(2πz) + cos(2πz)

)
The eigenfunctions Ti are provided by the λ-analytical decomposition (10)
upon functions tp(r) such that

Ti(r) =

Np∑
p=0

tp(r)λ
p
i , (37)

where each eigenvalue λi of the discrete spectrum sets its eigenfunctions Ti from
(34). We hereby provide the five first elements of these spectrum computed
with a finite truncation of Np = 20 in (34) and parameter Pe = 50, computed
with a formal calculus Maple software. λ1 = −1.738793, λ2 = −1.738793, λ3 =
−1.585275, λ4 = −1.3093020, λ5 = −1.011529. Function tp(r), p ∈ {0, 5} are
also hereby given by the following piecewise continuous polynomial functions
of r along the various solid-fluid domains [−2,−1] ∪ [−1, 0] ∪ [0, 1] ∪ [1, 2].
Starting with t0 = 1 identically equal to 1, we recursively compute the following
functions ti and obtained

r∈[−2,−1] t1 =0

r∈[−1,0] t1 =25 (r − 1) (1 + r)3

r∈[0,1] t1 =− 25 r4 + 50 r3 − 50 r − 25

r∈[1,2] t1 =− 50

(38)



r∈[−2,−1] t2 =− 1

2
(r + 2)2

r∈[−1,0] t2 =
1347

14
+

2236 r

7
− r2

2
− 1250 r3 − 1875 r4 − 750 r5 + 500 r6 +

3750 r7

7
+

1875 r8

14

r∈[0,1] t2 =
1347

14
+

2236 r

7
− r2

2
− 1250 r3 − 625 r4 + 750 r5 + 500 r6 − 3750 r7

7
+

1875 r8

14

r∈[1,2] t2 =1248− 13014 r

7
− r2

2
(39)

r∈[−2,−1] t3=0

r∈[−1,0] t3=
5(1+r)3(−11661−20261 r+96921 r2+226961 r3+8750 r4−362250 r5−322000 r6−18500 r7+84375 r8+28125 r9)

462

r∈[0,1] t3=− 19435
154
− 19730 r

33
+ 25r2

2
+ 101200r3

21
+ 78125r4

14
− 33610r5

7
− 74965r6

6
+ 31250r7

7
+ 103125r8

14
− 3125r9

3
− 72500r10

21

+ 140625r11

77
− 46875r12

154

r∈[1,2] t3= 14580
11
−100 r+25 r2

(40)
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r∈[−2,−1] t4= 1
24

(r+2)4

r∈[−1,0] t4= 21071161
504504

+ 3288262 r
9009

− 1347 r2

28
− 209989 r3

33
− 33452423 r4

1848
− 95900 r5

11
+ 2031875 r6

42
+ 15973250 r7

147
+ 2275625 r8

28
− 2028125 r9

63

− 4179325 r10

36
− 7640625 r11

77
− 2265625 r12

66
+ 421875 r13

91
+ 60968750 r14

7007
+ 234375 r15

77
+ 234375 r16

616

r∈[0,1] t4=+ 21071161
504504

+ 3288262 r
9009

− 1347 r2

28
− 209989 r3

33
− 21791423 r4

1848
+ 101400 r5

11
+ 2019625 r6

42
+ 796750 r7

147
− 10902625 r8

196
− 2018875 r9

63

+ 14244725 r10

252
+ 609375 r11

77
− 8828125 r12

462
− 421875 r13

91
+ 60968750 r14

7007
− 234375 r15

77
+ 234375 r16

616

r∈[1,2] t4=− 22888172
1617

+ 1164110834 r
63063

−624 r2+ 2169 r3

7

(41)



r∈[−2,−1] t5=0

r∈[−1,0] t5= 5 (1+r)3

162954792(1594383325−582590385 r−978868182 r2+74397416190 r3+111713337741 r4+410289881841 r5−1279496305500 r6

−741396373500 r7+1797598889250 r8+3506620554250 r9+1894060853250 r10−1117168905750 r11

−2202785812500 r12−1228317562500 r13−156926250000 r14+140323125000 r15+68527265625 r16+9789609375 r17)

r∈[0,1] t5= 7971916625
162954792

+ 3500466325 r
27159132

+ 19435 r2

308
+ 50174095 r3

22932
+ 2038131125 r4

252252
− 25775835 r5

4004
− 19508095 r6

308
− 250061555 r7

6468

+ 132625865 r8

1176
+ 37396250 r9

231
− 251021875 r10

1764
− 269196250 r11

1617
+ 1040385625 r12

19404
+ 170490000 r13

1001
− 74039375 r14

924

− 62421875 r15

1617
+ 434609375 r16

24024
+ 7008984375 r17

476476
− 4114843750 r18

357357
+ 17578125 r19

5852
− 3515625 r20

11704

r∈[1,2] t5=− 96144058760
20369349

+ 83080 r
33
− 7290 r2

11
+ 50 r3

3
− 25 r4

12

(42)
Parameter αi of (36) is given by (22) using closure function Ti(R = 2) and its
corresponding eigenvalue λi.
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computation of 3d heat transfer in complex parallel heat exchangers using
generalized Graetz modes. Journal of Computational Physics, 268:84–105,
2014.
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