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RÉSUMÉ.Pour calculer le fonctionnement électrique du myocarde, nous utilisons une méthode de
volumes finis 3D sur maillages non-structurés. Pour cette méthode, nous démontrons la stabilité
L∞ et la convergenceL2 de l’approximation pour les schémas en temps d’Euler explicite et
implicite, sous une condition de pas de temps. La technique de démonstration pour la stabilité
est dite des « rectangles invariants ». Un résultat numérique est montré.

ABSTRACT.The 3D electrical activity of the heart is computed with a finite volume method on
unstructured meshes. This paper gives conditions on the time-step to ensure aL∞ stability
property for an explicit and a semi-implicit time-stepping method. The proof is based on the
idea of “invariant rectangles”. A convergence result is proved inL2, and a numerical example
is shown.
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1. Introduction

Three dimensional computer models of the electrical activity in the myocardium
are increasingly popular : the heart’s activity generates an electromagnetic field in
the torso, and produces a surface potential map which measure is the well-known
electrocardiogram (ECG).

Despite the discrete structure of the heart muscle, recent studies in electro-cardio-
logy assume the anisotropic cardiac tissues to be represented at a macroscopic level
by a system of one or two semi-linear parabolic PDE of reaction-diffusion type and
one or several ODEs. We refer to [FRA 02] for a mathematical derivation of these
equations.

The different reaction terms, in the PDE and in the ODEs live at very different
time scales. As a consequence, the solutions exhibit very sharp fronts propagating at
high speeds, and its computation requires fine unstructured meshes. Only the recent
improvement of computing capabilities allow 3D computations to be achieved. Mo-
reover, until very recently, they were restricted to finite differences methods on struc-
tured grids and simple geometries [NAS 04]. A few researchers recently started to
study computations on 3D unstructured meshes, coupled to an explicit, semi-implicit
or fully-implicit time-stepping method [LIN 03, BOU 03]. The analysis of a Galerkin
semi-discrete space approximation was conducted by S. Sanfelici [SAN 02]. But, to
our knowledge, there has been no attempt at studying the effects of the time-stepping
method on the stability of the approximation. As a matter of fact the problem of stabi-
lity in time of fully discretized approximations is as difficult as the problem of global
stability for the continuous solution of reaction-diffusion systems.

The main issue of this paper is to study the theoretical stability criterion for the
explicit and semi-implicit Euler methods ; and to derive error estimates for the ap-
proximate solutions.

Only the results are stated here, and the detailed proofs can be found in [COU 04].

2. The Reaction-Diffusion System of Equations

2.1. The Macroscopic Mono-domain Model in Electro-Cardiology

At a microscopic scale, the surface membrane of the myocardiac cells delimits an
intra and an extra-cellular medium, both containing ionic species. The model accounts
for the dynamics of the trans-membrane ionic currentsIion and difference of potential
u. It writes

ε
du

dt
= ε2∇ · (σ∇u) + Iion, (1)
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and can be obtained through an homogenization process [FRA 02]. The total ionic
currentIion is controlled both by the trans-membrane potentialu and by a one or
more auxiliary variablev ∈ Rp :

Iion = f(u, v),
dv

dt
= g(u, v) (2)

and whereε � 1 measures the time and space scales differences between the va-
riables. The variablesv, calledgating variables, have been introduced by Hodgkin
and Huxley in [HOD 52], who gave a first 4 variables model for the nerve axon of the
giant squid. The development of accurate models, still based on the concept ofgating
variables, is an active field of research in electro-physiology, resulting in numerous io-
nic models for the cardiac cell, containing up to hundreds of equations. Of course the
numerical analysis is only carried out on simpler models, the most famous of which is
the FitzHugh-Nagumo one [FIT 61] :

f(u, v) = −u(u− 1)(u− a)− v, g(u, v) = ku− v, (3)

with 0 < a < 1 andk > 0. It will be referred to as theFHN model. A modified
version proposed by Aliev and Panfilov [PAN 96] to suit the behavior of myocardiac
cells writes :

f(u, v) = −ku(u− 1)(u− a)− uv, g(u, v) = ku(1 + a− u)− v, (4)

with k > 0 and0 < a < 1.It will be referred to as theAP model. This model has been
used recently in numerical studies [NAS 04, SER 02].

At a macroscopic level the cells are self-organized into fibers, and the fibers into
sheets, which is represented by an anisotropic tensor of conductivityσ = σ(x). The
fibers are tangent to the heart’s boundary skin, so that the normal to∂Ω is an eigen-
direction forσ(x) :

∀x ∈ ∂Ω, σ(x) · n(x) = λ(x)n(x), (5)

whereλ(x) > 0 andn is the unit vector field on∂Ω normal to∂Ω.

The potentialu shall satisfy a Neumann boundary condition :

∀x ∈ ∂Ω, (σ(x)∇u) · n(x) = 0, (6)

meaning that no current flows out of the heart.

No boundary condition is needed concerningv, since it is ruled point-wise by an
ODE. Of course, an initial data is provided :

∀x ∈ Ω, u(x, 0) = u0(x), v(x, 0) = v0(x). (7)
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2.2. Existence, Regularity and Stability of Solutions

Basically, local existence of solutions to (1)-(2), (6)-(7) is proved under standard
assumptions on the data (f andg locally Lipschitz – fixed point theorem, th. 2.1), and
stronger assumptions are needed in order to extend the solutions to all timet > 0 using
some stability properties and resulting in strong regular solutions [HEN 81, SMO 83,
BRI 86].

Specifically, stability in time is achieved by the construction of invariant regions
for the solution (def. 2.2). It requires

– a good behavior of the non-linear terms outside a compact set ofR2 (this is the
case for theFHN andAPmodels, see fig. 1),

– a strong maximum principle for the spatial elliptic operator (lem. 2.3),

– regularity of the solution in order to apply the maximum principle (th. 2.1).

We only briefly recall below general results on existence, regularity and stability
found in [HEN 81, SMO 83]. They are also needed to carry out the numerical analysis.

Theorem 2.1 We consider the equations(1)-(2), (6)-(7) onΩ, a bounded open subset
of Rd, d = 1, 2, 3, with aC2 regular boundary∂Ω. The conductivity tensorσ, symme-
tric, is assumed to haveC1+ν regularity onΩ (it is 1+ν Hölder continuous) and to be
uniformly elliptic. The reaction termsf, g : R2 7→ R are assumed locally Lipschitz.

If the initial conditions (7) satisfiesu0 ∈ H2(Ω), u0 verifying(6), andv0 ∈ Cν(Ω)
then(1)-(2), (6)-(7) have a unique weak solutionw(t, x) = (u(t, x), v(t, x)) on Ω ×
[0, T ) for someT > 0.

Moreoverw(t, x) is continuously differentiable in the variablet onΩ× (0, T ) and
u(·, t) ∈ C2(Ω) for t ∈ (0, T ) ; and then(1)-(2), (6)-(7) hold in a strong sense.

Definition 2.2 The rectangular setΣ = [u−, u+] × [v−, v+] ⊂ R2 is an invariant
set forf andg if

∀(u, v) ∈ Σ,

∣∣∣∣∣∣∣∣∣
u = u−, v− ≤ v ≤ v+ ⇒ f(u, v) > 0,

u = u+, v− ≤ v ≤ v+ ⇒ f(u, v) < 0,

v = v−, u− ≤ u ≤ u+ ⇒ g(u, v) > 0,

v = v+, u− ≤ u ≤ u+ ⇒ g(u, v) < 0.

This simply means thatΣ is a strictly contracting region for the flow(f, g) in R2.

Lemma 2.3 Let Ω be an open bounded subset ofRd whose boundary∂Ω hasC2

regularity. Letu ∈ C2(Ω) satisfy the boundary condition(6) for a tensorσ ∈ C1(Ω)
satisfying(5).

If u has a maximum (resp. minimum) inx ∈ Ω then∇ · (σ∇u)(x) ≤ 0 (resp.
∇ · (σ∇u)(x) ≥ 0).
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Theorem 2.4 We consider equations(1)-(2), (6)-(7) with the assumptions of theorem
2.1, so that there exists a strong solutionw(t) = (u(t), v(t)) for t ∈ [0, T ). We
moreover assume that the conductivity tensorσ verifies(5).

Let Σ be an invariant rectangle as in def. 2.2 ; thenΣ is an invariant region for
(1)-(2), (6)-(7), meaning that :

∀x ∈ Ω, (u0(x), v0(x)) ∈ Σ ⇒ ∀t > 0, ∀x ∈ Ω, (u(t, x), v(t, x)) ∈ Σ.

As a consequence, the strong solutionw(t) exists for allt > 0.

REMARQUE. —
Invariant regions for theFHN or APmodels can be constructed as big as necessary to
contain any bounded initial data, as displayed on figure 1.

1a
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g(u, v) = 0

f(u, v) = 0

a
u

v

a + 1
1

Σ

f(u, v) = 0
g(u, v) = 0

Figure 1. Invariant regionsΣ for FHN (left) and AP (right) models

3. The Finite Volume Approximation

We shall approximate the solutions of system (1)-(2), (6)-(7) onΩ with a finite vo-
lume method according to the framework of [EYM 00], on admissible meshes adapted
to the conductivity tensorσ defined by :

1) a partitionT of Ω into polygonal subsets called cells. On each cellsK ∈ T the
conductivity tensorσ is approximated by its mean value onK

∀K ∈ T , σK =
1

m(K)

∫
σ(x)dx (8)

wherem(K) stands for the measure ofK ;

2) a setS of interfacese that are either the frontier between two neighbor cells
K, L ∈ T (we will write e = K|L), or on the domain boundarye ⊂ ∂Ω ;

3) two sets of points(xK)K∈T , (ye)e∈S – the cells and interfaces centers – such
that for each cellK ∈ T and each interfacee ⊂ ∂K the directionye − xK is ortho-
gonal toe with respect to the metric defined byσ−1

K .
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In that framework the solution of (1)-(2), (6)-(7) is approximated by two functions
(uK)K∈T and(vK)K∈T both in the subspaceL2(T ) ⊂ L2(Ω) of the functions pie-
cewise constant on the cellsK ∈ T . For a cellK ∈ T and an interfacee ∈ S such
thate ⊂ ∂K, eithere ⊂ ∂Ω and the flux ofσ∇u is set to0, according to the boundary
condition ; ore = K|L, and we denote byne,K the unit normal vector toe pointing
outward ofK, and the flux ofσ∇u one is approximated in a consistent manner by

τe (uL − uK) for e ∈ S, e = K|L, andτe > 0. (9)

The transmission coefficientτe associated toe (see [EYM 00] for definition) contains
both geometrical informations on the meshT and diffusive informations on the con-
ductivity tensorσ. The integral formulation of (1) on each cellK ∈ T writes

εu′T (t) = ε2AT uT + f(uT , vT ), (10)

v′T (t) = g(uT , vT ). (11)

The discrete operatorAT is the approximation of the diffusive operator∇ · (σ∇·) for
the homogeneous Neumann boundary condition (6) :

AT : uT ∈ L2(T ) 7→ zT ∈ L2(T ), zK =
1

m(K)

∑
e∈S,e=K|L

τe(uL − uK). (12)

The operatorAT is symmetric and non-positive :

(AT uT , uT )L2(Ω) = −
∑

e∈S, e=K|L

τe |uL − uK |2 . (13)

Its kernel is the subspace of the functions constant onΩ.

4. Stability Analysis

We will prove that the semi-discrete and completely discretized solutions associa-
ted to an initial data bounded into an invariant rectangleΣ (def. 2.2) exists for allt > 0
and remains trapped in the rectangleΣ, exactly like the continuous solution.

We point out the the finite volume method provides, for very general unstructured
meshes, a method consistent with the stability properties of the system of PDEs. Mo-
reover, in the semi-discrete case, no additional assumptions on the meshT is required,
justifying the use of a finite volume method. Instability phenomena are only caused
by the time discretization.

4.1. The Semi-Discrete Case

The semi-discrete formulation (10)-(11) is a system of ODEs onL2(T )×L2(T ).
Given an initial data, it has a unique solutionwT ∈ C1([0, T );L2(T ) × L2(T )), for
someT > 0. Lemma 2.3 transposes easily to the semi-discrete case, as follows.
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Lemma 4.1 LetT be an admissible finite volume mesh ofΩ adapted to the conducti-
vity tensorσ and letAT as defined in(13)be the discretization of the elliptic operator
∇ · (σ∇·) onL2(T ).

If uT has a maximum (resp. minimum) inK ∈ T then{AT uT }K ≤ 0 (resp.
{AT uT }K ≥ 0).

Theorem 4.2 We considerΣ ⊂ R2 as in def. 2.2. ThenΣ is an invariant region for
the semi-discrete solutionwT of (10)-(11) :

∀K ∈ T , (u0
K , v0

K) ∈ Σ ⇒ ∀t > 0, ∀K ∈ T , (uK(t), vK(t)) ∈ Σ.

Sketch of the proof.Lemma 4.1 is easily observed on (12) :uL − uK ≤ 0 if uK is
a maximum of(uK), andτe > 0. The proof of theorem 4.2 is by contradiction : any
solutionwT running out ofΣ is such thatw′

T points outward ofΣ for somet > 0,
despite what is deduced from lemma 4.1 and the properties of the flow(f, g).

4.2. The Semi-Implicit Euler Method

On a finite volume meshT of Ω adapted to the conductivity tensorσ and given a
time-step∆t > 0, consider the semi-implicit method :

ε
un+1
T − un

T
∆t

= ε2AT un+1
T + f(un

T , vn
T ), (14)

vn+1
T − vn

T
∆t

= g(un
T , vn

T ). (15)

The method is implicit because a system of linear equations has to be solved in (14),
which matrix is(Id− ε∆tAT ). With property (13), it is obviously a positive-definite
matrix, so thatun

T can be constructed for alln ≥ 0.

Lemma 4.3 Let Σ ⊂ R2 be an invariant rectangle (def. 2.2). If the time-step∆t
verifies :

λf
∆t

ε
≤ 1, λg∆t ≤ 1, (16)

where
λf =

∣∣∣min
Σ

∂uf
∣∣∣ , λg =

∣∣∣min
Σ

∂vg
∣∣∣ , (17)

thenΣ is an invariant region for the discrete system(14)-(15) :

∀K ∈ T , (u0
K , v0

K) ∈ Σ ⇒ ∀n ≥ 0, ∀K ∈ T , (un
K , vn

K) ∈ Σ.

Sketch of the proof.Consider theC1 mappingΦ : (un, vn) 7→ (un+1, vn+1). With
the same argument than for theorem 4.2,Σ is proved to be invariant forΦ : Φ(Σ) ⊂
(Σ), under the stability assumptions (16).
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4.3. The Explicit Euler Method

We now consider the explicit Euler method

ε
un+1
T − un

T
∆t

= ε2AT un
T + f(un

T , vn
T ), (18)

vn+1
T − vn

T
∆t

= g(un
T , vn

T ), (19)

on a finite volume meshT of Ω adapted to the conductivity tensorσ and given a time
step∆t > 0.

Lemma 4.4 Let Σ ⊂ R2 be an invariant rectangle (def. 2.2). If the time-step∆t
verifies :

∀K ∈ T , ηK
ε∆t

m(K)
+ λf

∆t

ε
≤ 1, λg∆t ≤ 1, (20)

where
∀K ∈ T , ηK =

∑
e∈∂K∩Ω

τe > 0,

andλf,g are given by(17), thenΣ is an invariant region for the discrete system(18)-
(19) :

∀K ∈ T , (u0
K , v0

K) ∈ Σ ⇒ ∀n ≥ 0, ∀K ∈ T , (un
K , vn

K) ∈ Σ.

Sketch of the proof.It resemble the proof of lemma 4.3, without additional difficul-
ties.
REMARQUE. —
Concerning theFHN or APmodels, an explicit condition can be found, since

– λf = max(|f ′(u−)|, |f ′(u+)|) andλg = 1 in theFHN case,

– λf = max(|f ′(u−)− v −+|, |f ′(u+)− v+|) andλg = 1 in theAPcase.
REMARQUE. —
Under classical regularity assumptions on a family of meshes(Th)h>0, we naturaly
haveηK/m(K) = O(1/h2) whereh = size(T ).

5. Convergence analysis

This section is devoted to the computation of some error estimates for the approxi-
mations given by methods (14)-(15) or (18)-(19), under the stability conditions given
in lemmas 4.3 and 4.4.

Let w(t, x) be a strong solution of (1)-(2), (6)-(7) with initial valuew0(x) =
w(0, x), and consider its approximationwn

T on finite volume meshT and for∆t > 0,
given by any of the two previous methods.
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If w0 lies into an invariant regionΣ and if ∆t satisfy the required stability condi-
tion, then bothw(t, x) andwn

T remain bounded inΣ. The functionsf an g being
locally Lipschitz, it is easy to compare the functionsw andw.

For each time steptn = n∆t and for each cellK ∈ T , we introduce

wn
K = w(tn, xK) = (u(tn, xK), v(tn, xK)) . (21)

As a consequence, the error is measured as being the functionen
T = wn

T − wn
T ∈

L2(T )× L2(T ) for n ≥ 0.

Theorem 5.1 We consider system(1)-(2), (6)-(7) with the assumptions of theorem
2.1 and with a conductivity tensorσ satisfying(5). We assume thatΣ ⊂ R2 is an
invariant region as defined by def. 2.2, and consider a solutionw with initial value
w0(x) = w(0, x) in Σ’s interior, so thatw is defined for all time and remains inside
Σ.

Letwn
T be the approximation ofw as defined in(18)-(19) (or in (14)-(15)) with

∀K ∈ T , w0
K = w0(xK) = (u0(xK), v0(xK)). (22)

We assume furthermore that the meshT and∆t satisfies the stability condition(16)
(or (20)) relative toΣ. Then there exists two constantsC andµ, only depending on
the data (Ω, w0, f , g andΣ) such that forn∆t ≤ T ,

‖en
T ‖L2 ≤ C exp(µT ) (size(T ) + ∆t) ,

wheresize(T ) = maxK∈T diam(K).

Sketch of the proof.The solution being trapped intoΣ, the non-linear termsf, g are
considered as uniform Lipschitz functions onR2, and (1)-(2) is hardly a linear parabo-
lic system of equations. Consequently, the proof is almost straightforward, according
to the framework developped in [EYM 00].

A numerical example

As a conclusion, we show the result of a computation on a 3D mesh with 3763
vertices and 17349 tetraedra. TheAP modelis approximated with the explicit method
and the time-step is computed according to lemma 4.4 :∆t = 0.0031. The method is
observed to be unstable for larger time-steps (numerical blow-up within 2 or 3 itera-
tions).
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