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RESUME Pour calculer le fonctionnement électrique du myocarde, nous utilisons une méthode de
volumes finis 3D sur maillages non-structurés. Pour cette méthode, nous démontrons la stabilité
L et la convergencd.? de I'approximation pour les schémas en temps d’Euler explicite et
implicite, sous une condition de pas de temps. La technique de démonstration pour la stabilité
est dite des « rectangles invariants ». Un résultat numérique est montré.

ABSTRACTThe 3D electrical activity of the heart is computed with a finite volume method on
unstructured meshes. This paper gives conditions on the time-step to ensftestability
property for an explicit and a semi-implicit time-stepping method. The proof is based on the
idea of “invariant rectangles”. A convergence result is provedify and a numerical example

is shown.
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1. Introduction

Three dimensional computer models of the electrical activity in the myocardium
are increasingly popular : the heart’s activity generates an electromagnetic field in
the torso, and produces a surface potential map which measure is the well-known
electrocardiogram (ECG).

Despite the discrete structure of the heart muscle, recent studies in electro-cardio-
logy assume the anisotropic cardiac tissues to be represented at a macroscopic level
by a system of one or two semi-linear parabolic PDE of reaction-diffusion type and
one or several ODEs. We refer to [FRA 02] for a mathematical derivation of these
equations.

The different reaction terms, in the PDE and in the ODEs live at very different
time scales. As a consequence, the solutions exhibit very sharp fronts propagating at
high speeds, and its computation requires fine unstructured meshes. Only the recent
improvement of computing capabilities allow 3D computations to be achieved. Mo-
reover, until very recently, they were restricted to finite differences methods on struc-
tured grids and simple geometries [NAS 04]. A few researchers recently started to
study computations on 3D unstructured meshes, coupled to an explicit, semi-implicit
or fully-implicit time-stepping method [LIN 03, BOU 03]. The analysis of a Galerkin
semi-discrete space approximation was conducted by S. Sanfelici [SAN 02]. But, to
our knowledge, there has been no attempt at studying the effects of the time-stepping
method on the stability of the approximation. As a matter of fact the problem of stabi-
lity in time of fully discretized approximations is as difficult as the problem of global
stability for the continuous solution of reaction-diffusion systems.

The main issue of this paper is to study the theoretical stability criterion for the
explicit and semi-implicit Euler methods; and to derive error estimates for the ap-
proximate solutions.

Only the results are stated here, and the detailed proofs can be found in [COU 04].

2. The Reaction-Diffusion System of Equations
2.1. The Macroscopic Mono-domain Model in Electro-Cardiology

At a microscopic scale, the surface membrane of the myocardiac cells delimits an
intra and an extra-cellular medium, both containing ionic species. The model accounts
for the dynamics of the trans-membrane ionic currépts and difference of potential
u. It writes

du

e = €2V - (aVu) + Lion, 1)
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and can be obtained through an homogenization process [FRA 02]. The total ionic
currentl;,, is controlled both by the trans-membrane potentialnd by a one or
more auxiliary variable) € R? :

Ton = Fun), % = g(u0) @

and wherez < 1 measures the time and space scales differences between the va-
riables. The variables, calledgating variables have been introduced by Hodgkin
and Huxley in [HOD 52], who gave a first 4 variables model for the nerve axon of the
giant squid. The development of accurate models, still based on the congepinof
variables is an active field of research in electro-physiology, resulting in numerous io-
nic models for the cardiac cell, containing up to hundreds of equations. Of course the
numerical analysis is only carried out on simpler models, the most famous of which is

the FitzHugh-Nagumo one [FIT 61] :
f(u,v) = 7U(U* 1)(7"7@) -0, g(ua U) = ku — v, 3

with 0 < a < 1 andk > 0. It will be referred to as th&HN model A modified
version proposed by Aliev and Panfilov [PAN 96] to suit the behavior of myocardiac
cells writes :

flu,v) = —ku(u — 1)(v — a) — uv, g(u,v) =ku(l4+a—u)—v, (4)

with & > 0 and0 < a < 1.1t will be referred to as thAP model This model has been
used recently in numerical studies [NAS 04, SER 02].

At a macroscopic level the cells are self-organized into fibers, and the fibers into
sheets, which is represented by an anisotropic tensor of conduetivityr (x). The
fibers are tangent to the heart’'s boundary skin, so that the nornd4l ise an eigen-
direction foro(z) :

Ve e 0Q, o(x) n(x)= Az)n(z), (5)

whereA(z) > 0 andn is the unit vector field 0@ normal toos2.

The potentiakl: shall satisfy a Neumann boundary condition :
Ve € 0, (o(x)Vu)- -n(z) =0, (6)

meaning that no current flows out of the heart.

No boundary condition is needed concerningince it is ruled point-wise by an
ODE. Of course, an initial data is provided :

Ve e Q, u(x,0) =ug(x), v(z,0) = vo(x). (7)
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2.2. Existence, Regularity and Stability of Solutions

Basically, local existence of solutions to (1)-(2), (6)-(7) is proved under standard
assumptions on the datf éndg locally Lipschitz — fixed point theorem, th. 2.1), and
stronger assumptions are needed in order to extend the solutions to dlttimesing
some stability properties and resulting in strong regular solutions [HEN 81, SMO 83,
BRI 86].

Specifically, stability in time is achieved by the construction of invariant regions
for the solution (def. 2.2). It requires

— a good behavior of the non-linear terms outside a compact &t (this is the
case for thé=HN andAP models, see fig. 1),

— a strong maximum principle for the spatial elliptic operator (lem. 2.3),
— regularity of the solution in order to apply the maximum principle (th. 2.1).

We only briefly recall below general results on existence, regularity and stability
found in [HEN 81, SMO 83]. They are also needed to carry out the numerical analysis.

Theorem 2.1 We consider the equatioli$)-(2), (6)-(7) on 2, a bounded open subset
of R¢, d = 1, 2, 3, with aC? regular boundand$2. The conductivity tensar, symme-
tric, is assumed to haw@'*+ regularity onQ (it is 1+ Holder continuous) and to be
uniformly elliptic. The reaction termg, ¢ : R? — R are assumed locally Lipschitz.

If the initial conditions (7) satisfieg, € H?(2), uq verifying(6), andvy € C¥(Q)
then(1)-(2), (6)-(7) have a unigque weak solutian(t, z) = (u(t,x),v(t,x)) onQ x
[0,T") for someT > 0.

Moreoverw(t, z) is continuously differentiable in the variablen Q x (0,7') and
u(-,t) € C%(Q) fort € (0,T); and then(1)-(2), (6)-(7) hold in a strong sense.

Definition 2.2 The rectangular seE = [u_, u,] x [v_, v] C R? is an invariant
set forf andg if

u=u_, v_ <v<wvy = f(u,v) >0,
U=1us, v—- <v<vy = f(u,v) <0
V(U,U)€E7 +5 = U = U4 f(v) )
v=ov_, u_ <u<uy = g(u,v) >0,
v=v4, u- <u<uy = gluy,v) <O0.

This simply means that is a strictly contracting region for the flogy, ) in R2.

Lemma 2.3 Let 2 be an open bounded subset®sff whose boundary$ has C*
regularity. Letu € C?(Q) satisfy the boundary conditigi®) for a tensoro € C1(Q)
satisfying(5).

If « has a maximum (resp. minimum)dine Q thenV - (cVu)(z) < 0 (resp.
V- (cVu)(x) > 0).
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Theorem 2.4 We consider equation4)-(2), (6)-(7) with the assumptions of theorem
2.1, so that there exists a strong solutiarft) = (u(t),v(t)) for ¢ € [0,T). We
moreover assume that the conductivity tensaerifies(5).

Let X be an invariant rectangle as in def. 2.2; th&his an invariant region for
(1)(2), (6)-(7), meaning that :

Vo € Q, (up(z),vo(x)) €L = VE>0, Vo € Q, (u(t,z),v(t,z)) € X.
As a consequence, the strong solutioft) exists for allt > 0.

REMARQUE. —
Invariant regions for th&HN or AP models can be constructed as big as necessary to
contain any bounded initial data, as displayed on figure 1.

-
fu,0) = \

Figure 1. Invariant regionsy: for FHN (left) and AP (right) models

3. The Finite Volume Approximation

We shall approximate the solutions of system (1)-(2), (6)-(7Qawith a finite vo-
lume method according to the framework of [EYM 00], on admissible meshes adapted
to the conductivity tensar defined by :

1) a partition7 of €2 into polygonal subsets called cells. On each cklls 7 the
conductivity tensor is approximated by its mean value én

1
wherem (K) stands for the measure éf;

2) a setS of interfacese that are either the frontier between two neighbor cells
K, L € T (we will write e = K| L), or on the domain boundaeyC 992 ;

3) two sets of point$z i ) ker, (Ve)ecs — the cells and interfaces centers — such
that for each celK' € 7 and each interface C 0K the directiony, — x is ortho-
gonal toe with respect to the metric defined by_(l.
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In that framework the solution of (1)-(2), (6)-(7) is approximated by two functions
(ux) ket and (v ) ke7 both in the subspack?(7) c L?(2) of the functions pie-
cewise constant on the cells € 7. For a cellK € 7 and an interface € S such
thate C 0K, eithere C 092 and the flux obrVu is set to0, according to the boundary
condition ; ore = K|L, and we denote by, x the unit normal vector te pointing
outward of K, and the flux o Vu one is approximated in a consistent manner by

Te(up —ug) foree S, e=KJ|L, andr. >0. (9)

The transmission coefficient associated te (see [EYM 00] for definition) contains
both geometrical informations on the meghand diffusive informations on the con-
ductivity tensofo. The integral formulation of (1) on each céll € 7 writes
eup(t) = e*Arur + flur,vr), (10)
vr(t) = glur,vr). (11)

The discrete operatot+ is the approximation of the diffusive operatar- (cV-) for
the homogeneous Neumann boundary condition (6) :

1
. 2 2 _ E
AT tuT € L (T) — zT € L (T), ZK = WI() s _KILTQ(UL - UK) (12)

The operatord+ is symmetric and non-positive :
(Arur,ur) ooy =~ Y. Telup —uxl*. (13)
e€S,e=K|L

Its kernel is the subspace of the functions constarfe.on

4. Stability Analysis

We will prove that the semi-discrete and completely discretized solutions associa-
ted to an initial data bounded into an invariant rectaig(def. 2.2) exists for alt > 0
and remains trapped in the rectangleexactly like the continuous solution.

We point out the the finite volume method provides, for very general unstructured
meshes, a method consistent with the stability properties of the system of PDEs. Mo-
reover, in the semi-discrete case, no additional assumptions on theZniesbquired,
justifying the use of a finite volume method. Instability phenomena are only caused
by the time discretization.

4.1. The Semi-Discrete Case
The semi-discrete formulation (10)-(11) is a system of ODE&#®(T) x L?(7).

Given an initial data, it has a unique solution- € C1([0,7); L*(T) x L*(T)), for
someT” > 0. Lemma 2.3 transposes easily to the semi-discrete case, as follows.
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Lemma 4.1 Let7 be an admissible finite volume mestdapted to the conducti-
vity tensoro and letA+ as defined iff13) be the discretization of the elliptic operator
V- (aV:)onL3(T).

If ur has a maximum (resp. minimum) K € 7 then{Arur}x < 0 (resp.
{ATUT}K > 0).

Theorem 4.2 We conside® C R? as in def. 2.2. Thel is an invariant region for
the semi-discrete solutians of (10)(11):

VK €T, (uf,v%) €X = Vt >0,VK € T, (ux(t),vk(t)) € 2.

Sketch of the proof.Lemma 4.1 is easily observed on (12); — ux < 0if ug is

a maximum of(ug ), andr. > 0. The proof of theorem 4.2 is by contradiction : any
solutionwy running out ofX is such thatv/- points outward o for somet > 0,
despite what is deduced from lemma 4.1 and the properties of the flayy.

4.2. The Semi-Implicit Euler Method

On a finite volume mesti of Q2 adapted to the conductivity tenserand given a
time-stepAt > 0, consider the semi-implicit method :

n+1

SEUE 2 Ar 4 faop), a4
fun_‘—l*l}n n n

The method is implicit because a system of linear equations has to be solved in (14),
which matrix is(ld — eAtA7). With property (13), it is obviously a positive-definite
matrix, so that: can be constructed for ail > 0.

Lemma4.3 Let ¥ C R? be an invariant rectangle (def. 2.2). If the time-stap
verifies :

At
M <L A< (16)
where
)\f = ‘HIXI)H 8“]0 5 )\g = ‘In;:n avg ) (17)

thenX is an invariant region for the discrete systéat)-(15):
VK €T, (u%,v%) €Y = V¥n>0,VK € T, (u},vy) € %
Sketch of the proof. Consider theC'' mapping® : (u™,v™) — (u™*!, 0" +1). With

the same argument than for theorem 4:4s proved to be invariant fob : ®(X) C
(X), under the stability assumptions (16).
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4.3. The Explicit Euler Method

We now consider the explicit Euler method

n+1

Tt = SArug ), (19)
Un+1 — vy n .n
Z At z = g(uTva)v (19)

on a finite volume mesfi of 2 adapted to the conductivity tenserand given a time
stepAt > 0.

Lemma4.4 Let ¥ C R? be an invariant rectangle (def. 2.2). If the time-stap

verifies :
eAt At
VK €T — A — <1, MNAt<1 20
€ ) nKm(K)+ fE_a g =~ 4, ()
where
VKeT, ng= » 7>0,
ecO KN

and ¢ 4, are given by(17), thenX is an invariant region for the discrete systgt8)-
(29):

VK €T, (u?(,v?() €¥ = Vn>0,VK €7, (urll(av?() € X.

Sketch of the proof. It resemble the proof of lemma 4.3, without additional difficul-
ties.

REMARQUE. —

Concerning th&HN or AP models, an explicit condition can be found, since

— Ay = max(|f'(u_)|,|f' (us)]) andA, = 1 in theFHN case,
- Ar =max(|f'(u_) —v —+|,|f(us) — vy]) @andA, = 1 in the AP case.
REMARQUE. —

Under classical regularity assumptions on a family of mestdg$,~o, we naturaly
havenx /m(K) = O(1/h?) whereh = size(7).

5. Convergence analysis

This section is devoted to the computation of some error estimates for the approxi-
mations given by methods (14)-(15) or (18)-(19), under the stability conditions given
inlemmas 4.3 and 4.4.

Let w(t,x) be a strong solution of (1)-(2), (6)-(7) with initial valuey(z) =
w(0, z), and consider its approximatiar; on finite volume mesi and forA¢ > 0,
given by any of the two previous methods.



Finite Volume and Electrocardiology 9

If wq lies into an invariant regiok and if At satisfy the required stability condi-
tion, then bothw(t, ) andw’: remain bounded ifE. The functionsf an g being
locally Lipschitz, it is easy to compare the functianandw.

For each time stefi* = nAt and for each celK € 7, we introduce
wie = w(t", 2x) = (u(t”,zx), v(t", 2K)) - (21)

As a consequence, the error is measured as being the furética w? — W} €
L3(T) x L*(T) forn > 0.

Theorem 5.1 We consider systetfi)-(2), (6)-(7) with the assumptions of theorem
2.1 and with a conductivity tenser satisfying(5). We assume th&& c R2 is an
invariant region as defined by def. 2.2, and consider a solutionith initial value
wo(z) = w(0,x) in ¥'s interior, so thatw is defined for all time and remains inside
3.

Letw?’ be the approximation ab as defined ir{18)-(19) (or in (14)-(15)) with
VK €T, W% =wo(zr) = (uo(zx),vo(zK)). (22)

We assume furthermore that the mé&sland At satisfies the stability conditiof16)
(or (20)) relative toX. Then there exists two constarfisand ., only depending on
the data (2, wg, f, g andX) such that fomAt < T,

lefllze < Cexp(uT) (size(T) + At),

wheresize(7) = max ke diam(K).

Sketch of the proof. The solution being trapped intd, the non-linear termg, g are
considered as uniform Lipschitz functions&p, and (1)-(2) is hardly a linear parabo-

lic system of equations. Consequently, the proof is almost straightforward, according
to the framework developped in [EYM 00].

A numerical example

As a conclusion, we show the result of a computation on a 3D mesh with 3763
vertices and 17349 tetraedra. TAB modeis approximated with the explicit method
and the time-step is computed according to lemma A4 = 0.0031. The method is
observed to be unstable for larger time-steps (humerical blow-up within 2 or 3 itera-
tions).
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Figure 2. Values of the unknown at different timet. The region at rest is in black,
while excited region is in light grey.
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