High order methods for the monodomain model

Charlie DOUANLA-LONTSI¹, <u>Charles $PIERRE^2$ </u>

In collaboration with Yves Coudière¹

¹ Institut de Mathématiques de Bordeaux, CARMEN team INRIA, IHU Liryc, Université de Bordeaux.

² Laboratoire de Mathématiques et de leurs Applications, Université de Pau.

Roma, April 2018

Discretization errors, why ?

Sharp depolarization

・ロト ・四ト ・ヨト ・ヨト

Sharp depolarization

• TNNP model:

Depolarization duration \simeq 1/500 s

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

mV

Sharp wavefronts

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Potential in mV

Sharp depolarization

TNNP model:

Depolarization duration $\simeq 1/500~{
m s}$

Space in cm

Sharp wavefronts

- TNNP model
- $A_m = 1000 \text{ cm}^{-1}$

Wavefront thickness: $\simeq 1/20~{
m cm}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Spiral wave: description

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Spiral wave: discretisation error

At a fixed time instant: t = 160 ms

Order 3 finite elements

• $\Delta x = 0.6 \text{ mm}$

Order 3 time stepping-method

• $\Delta t = 0.1 \text{ ms}$

Discretization error: 0.7 %

Spiral wave: discretisation error

At a fixed time instant: t = 160 ms

Order 3 finite elements

• $\Delta x = 0.6 \text{ mm}$

Order 3 time stepping-method

• $\Delta t = 0.1$ ms

Discretization error: 0.7 %

Order 1 finite elements

• $\Delta x = 0.6 \text{ mm}$

Order 1 time stepping-method

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• $\Delta t = 0.1$ ms

Spiral wave: discretisation error

At a fixed time instant: t = 160 ms

Order 3 finite elements

• $\Delta x = 0.6 \text{ mm}$

Order 3 time stepping-method

• $\Delta t = 0.1 \text{ ms}$

Discretization error: 0.7 %

• CPU $\simeq 2.5 \text{ s}$

Order 1 finite elements • $\Delta x = 0.6 \text{ mm}$ Order 1 time stepping-method • $\Delta t = 0.1/16 \text{ ms}$ Discretization error: **40 %** • CPU $\simeq 6.0 \text{ s}$

Spiral wave: discretisation error

At a fixed time instant: t = 160 ms

Order 3 finite elements

• $\Delta x = 0.6 \text{ mm}$

Order 3 time stepping-method

• $\Delta t = 0.1 \text{ ms}$

Discretization error: 0.7 %

• CPU $\simeq 2.5 \text{ s}$

Order 1 finite elements • $\Delta x = 0.6/8 \text{ mm} \simeq 75 \mu \text{m}$ Order 1 time stepping-method • $\Delta t = 0.1 / 16 \text{ ms}$ Discretization error: **2.5 %** • CPU $\simeq 215 \text{ s}$

Outline

What error ?

- Mathematical errors
- Physiological errors :
- errors on activation times

errors on the wavefront celerity

Potential at time t = 16 ms

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Outline

What error ?

- Mathematical errors
- Physiological errors : errors on activation times

errors on the wavefront celerity

Total discretization error:

• total error \leq (error in space) + (error in time)

Outline:

- 1 Discretization error in space
- 2 Time-stepping methods

ms

Test case

- square geometry (1 cm²)
- constant anisotropy (horizontal fibres)
- Beeler-Reuter model
- $A_m = 500 \text{ cm}^{-1}$
- single-site stimulation (at the origin)

э.

Discretization error in space, 1

Relative error (in L^2 -norm) on:

 $v(t_1, .) =$ transmembrane potential at time $t_1 = 16$ ms

Relative error (in L^2 -norm) on:

 $v(t_1, .) =$ transmembrane potential at time $t_1 = 16 \text{ ms}$

Relative error (in L^2 -norm) on:

wavefront velocity

Error = $O(\Delta x^k)$

(日)、

э

Relative error (in L^2 -norm) on:

activation times

wavefront velocity

Maximal mesh size

to have a discretization error in space

below 3%

Error type:	$v(t_1,.)$	$\nabla v(t_1,.)$	act. times	wave speed
P^1	0.01	$4 imes 10^{-3}$	0.03	$6 imes 10^{-3}$
P^2	0.04	0.02	0.1	0.04
Р ³	0.09	0.04	0.2	0.07

- From order 1 to order 2: Conclusion
 - 4 time coarser mesh
 - From order 1 to order 3: 8 time coarser mesh

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Time-stepping

Equation for the gating variables w:

$$\frac{\mathrm{d}w}{\mathrm{d}t} = \frac{w_\infty - w}{\tau} = a(v, w)w + b(v, w)$$

with $a(v, w) = -1/\tau$ and $b(v, w) = w_{\infty}/\tau$.

・ロト・日本・モト・モート ヨー うへで

Time-stepping

Equation for the gating variables w:

$$\frac{\mathrm{d}w}{\mathrm{d}t} = \frac{w_{\infty} - w}{\tau} = a(v, w)w + b(v, w)$$

with $a(v, w) = -1/\tau$ and $b(v, w) = w_{\infty}/\tau$.

$$w_{n+1} = w_n + \Delta t \varphi_1(\alpha_n \Delta t) \left(\alpha_n w_n + \beta_n \right)$$

for $\varphi_1(z) = (e^z - 1)/z$ with:

$$\alpha_n = a(v_n, w_n) := a_n$$

$$\beta_n = b(v_n, w_n) := b_n$$

Rush-Larsen (1978): order 1.

Time-stepping

Equation for the gating variables w:

$$\frac{\mathrm{d}w}{\mathrm{d}t} = \frac{w_{\infty} - w}{\tau} = a(v, w)w + b(v, w)$$

with $a(v, w) = -1/\tau$ and $b(v, w) = w_{\infty}/\tau$.

$$w_{n+1} = w_n + \Delta t \varphi_1(\alpha_n \Delta t) \Big(\alpha_n w_n + \beta_n \Big)$$

for $\varphi_1(z) = (e^z - 1)/z$ with:

$$\alpha_n = \frac{3}{2}a_n - \frac{1}{2}a_{n-1}$$
$$\beta_n = \frac{3}{2}b_n - \frac{1}{2}b_{n-1}$$

Perego-Venezziani (2009): order 2.

Equation for the gating variables w:

$$\frac{\mathrm{d}w}{\mathrm{d}t} = \frac{w_{\infty} - w}{\tau} = a(v, w)w + b(v, w)$$

with $a(v, w) = -1/\tau$ and $b(v, w) = w_{\infty}/\tau$.

$$w_{n+1} = w_n + \Delta t \varphi_1(\alpha_n \Delta t) \Big(\alpha_n w_n + \beta_n \Big)$$

for $\varphi_1(z) = (e^z - 1)/z$ with:

-

$$\alpha_n = \frac{1}{12} (23a_n - 16a_{n-1} + 5a_{n-2})$$

$$\beta_n = \frac{1}{12} (23b_n - 16b_{n-1} + 5b_{n-2}) + \frac{\Delta t}{12} (a_n b_{n-1} - a_{n-1} b_n)$$

Coudière-Lontsi-Pierre (2017): order 3.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Time-stepping

$$w_{n+1} = w_n + \Delta t \varphi_1(\alpha_n \Delta t) \Big(\alpha_n w_n + \beta_n \Big)$$

for $\varphi_1(z) = (e^z - 1)/z$ with:

$$\alpha_n = \frac{1}{24} (55a_n - 59a_{n-1} + 37a_{n-2} - 9a_{n-3}),$$

$$\beta_n = \frac{1}{24} (55b_n - 59b_{n-1} + 37b_{n-2} - 9b_{n-3}) \\ + \frac{\Delta t}{12} (a_n (3b_{n-1} - b_{n-2}) - (3a_{n-1} - a_{n-2})b_n),$$

Coudière-Lontsi-Pierre (2017): order 4.

Spiral wave test case

• Total error in space = 4.3 %

• Beeler Reuter model (modified)

•
$$A_m = 600 \text{ cm}^{-1}$$

• Order 2 finite elements:

$$\Delta x = 0.6 \text{ mm}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Spiral wave test case

• Total error in space = 4.3 %

• Total discretization error with order k Rush-Larsen like scheme:

Order <i>k</i> :	1	2	3	4
$\Delta t = 0.1$ ms	_	18 %	5.1 %	_
$\Delta t = 0.1/2$ ms	_	8.3 %	4.4 %	4.2 %
$\Delta t = 0.1/4$ ms	23 %	5.3 %	4.3 %	4.3 %
$\Delta t = 0.1/8$ ms	11.8 %	4.5 %	4.3 %	4.3 %

Spiral wave test case

• Total error in space = 4.3 %

• Total discretization error with order k Rush-Larsen like scheme:

Order <i>k</i> :	1	2	3	4
$\Delta t = 0.1$ ms	_	18 %	5.1 %	_
$\Delta t = 0.1/2$ ms	_	8.3 %	4.4 %	4.2 %
$\Delta t = 0.1/4$ ms	23 %	5.3 %	4.3 %	4.3 %
$\Delta t = 0.1/8$ ms	11.8 %	4.5 %	4.3 %	4.3 %

• Required CPU to have an error $\simeq 5$ %

Order <i>k</i> :	1	2	3	4			
CPU	27	3.75	1	2.05			
				Image: A matrix and a matrix	ヨト くヨト	-	5

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Future developments

More realistic test cases:

- · complex domains with curved boundaries,
- 3D geometry.

Time stepping methods:

- improved stability,
- one-step methods.

Introduction

Introduction

Introduction