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Abstract

We consider the generalized Graetz problem associated with station-

ary convection-diffusion inside a domain having any regular three dimen-

sional translationally invariant section and finite or semi-infinite extent.

Our framework encompasses any previous “extended” and “conjugated”

Graetz generalizations and provides theoretical bases for computing the

orthogonal set of generalized two-dimensional Graetz modes. The theo-

retical framework both includes heterogeneous and possibly anisotropic

diffusion tensor. In the case of semi-infinite domains, the existence of

a bounded solution is shown from the analysis of a two-dimensional

operator eigenvectors which form a basis of L2. In the case of finite

domains a similar basis can be exhibited and the mode’s amplitudes

can be obtained from the inversion of newly defined finite domain op-

erator. Our analysis both includes the theoretical and practical issues

associated with this finite domain operator inversion as well as its in-

terpretation as a multi-reflection image method. Error estimates are

provided when numerically truncating the spectrum to a finite number

of modes. Numerical examples are validated for reference configurations

and provided in non-trivial cases. Our methodology shows how to map

the solution of stationary convection-diffusion problems in finite three

dimensional domains into a two-dimensional operator spectrum, which

leads to a drastic reduction in computational cost.
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Introduction

The Graetz problem was first settled as the stationary convection-dominated
transport problem inside an axi-symmetrical Poiseuille flow in a semi-infinite
cylinder [7]. It is the cornerstone of many practical applications. The asso-
ciated orthogonal Graetz modes are interesting to consider since their pro-
jections into the imposed entrance boundary conditions provide a nice set of
longitudinally exponentially decaying solution whichever the applied lateral
boundary conditions, or the considered velocity field (see for exemple [13]).
Since many important convective heat transfer problems share similar prop-
erties, the computation of a similar orthogonal basis has been attractive in
many studies in a context where intensive computer simulations were diffi-
cult [20, 3]. Nevertheless the generalization of this concept to simple situa-
tions is not straightforward. When, for example, for the problem is no longer
convection-dominated and longitudinal diffusion is considered, a situation ref-
ered to as the “extended” Graetz configuration (see for example [12, 6, 21, 10]),
it is not simple to find a set of orthogonal modes. The same difficulty arises
when coupling the convection-diffusion arising into the Poiseuille flow to pure
diffusion into a surrounding cylinder, a configuration generally denoted “con-
jugated” Graetz configuration [2, 11, 4].

It is as late as 1980 than Papoutsakis et al. [15, 14], realized that a matrix
operator acting upon a two-component temperature/longitudinal gradient vec-
tor (for the Graetz axi-symmetrical configuration) could provide a symmetric
operator to the “extended” Graetz problem. The mathematical properties of
this operator were nevertheless not deeply analyzed in [15, 14]; neither the
compacity of the resolvent, the spectrum structure and location, the involved
functional spaces, nor the numerical convergence were studied. One has to ad-
mit that, even limited in scope, this important contribution remained poorly
cited and recognized until the late nineties, when it was realized that a similar
approach could be adapted to any concentric axi-symmetrical configurations
[16, 17, 9, 8], adding nevertheless a larger number of unkowns. Recently a
detailed mathematical study of a generalized version of the Graetz problem,
referred to as generalized Graetz problem here, for general non-axisymmetrical
geometries, for any bounded velocity profile and including heterogeneous dif-
fusivity, was presented in [18] and applied to infinite (at both ends) cylinder
configurations. This mathematical study has brought to the fore the direct
relevance of a new reformulation of the problem into a mixed form: adding to
the original scalar temperature unknown a vectorial auxiliary unknown. This
reformulation involves an operator, referred to as the Graetz operator, acting
both on the scalar and vectorial unknowns. The Graetz operator was showed to
be self adjoint, with compact resolvant in a proper functional setting. Its spec-
trum was proved to be composed of a double infinite discrete set of eigenvalues:
a positive set (downstream modes) and a negative one (upstream modes).

The aim of the present contribution is to provide the mathematical analysis
and numerical methods for solving the generalized Graetz problem in semi-
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infinite and finite domains, as well as effective numerical methods to estimate
the Graetz modes in the non-axisymmetrical case. These results are interesting
since finite domains represent the most relevant configurations for applications
such as, for example, convective heat pipes, the size of which is obviously finite.

Let us now describe more precisely the context of this study. This contri-
bution addresses convection-diffusion/thermal transfer in a generalized cylin-
drical geometry Ω×I, where Ω ⊂ R2 is a connected open domain and I ⊂ R is
an interval, possibly unbounded at one or both of its ends. The fluid velocity
inside the tube is denoted by v(ξ, z), whereas its temperature is denoted by
T (ξ, z) for ξ = (x, y) ∈ Ω and z ∈ I.

The fluid velocity v is assumed to be directed along the z direction and
constant in the z variable, that is v(ξ, z) = v(ξ)ez, where ez is the unit vector
in the z direction. Moreover, the velocity profile is assumed to be bounded,
i.e v ∈ L∞(Ω).

The conductivity matrix is supposed to be symmetric bounded, coercive
and anisotropic in the ξ direction only, i.e. it is of the form

(
σ(ξ) 0
0 c(ξ)

)
,

and there exists a constant C > 1 such that

C|η|2 ≥ ηTσ(ξ)η ≥ C−1|η|2 and C ≥ c(ξ) ≥ C−1, ∀ξ ∈ Ω, η ∈ R2. (1)
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Figure 1: The geometry of the generalized Graetz problem

In this setting (see Figure 1), the steady convection-diffusion equation,
refered to as the generalized Graetz problem, reads:

c(ξ)∂zzT + divξ(σ(ξ)∇ξT )− Pev(ξ)∂zT = 0, (2)


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where Pe is the so-called Peclet number. In the sequel, the subscript ξ will
be omitted and we will simply write: ∆ = ∆ξ, ∇ = ∇ξ, div = divξ for the
Laplacian, gradient and divergence operators in the section Ω.

This problem is reduced to a system of two first order equations by in-
troducing an additional vectorial unknown p. Let h = Pevc−1, we define the
Graetz operator A by

A
(
T
p

)
=

(
hT − c−1div(p)

σ∇T

)
, (3)

in other words

A =

(
h −c−1div
σ∇ 0

)
. (4)

The generalized Graetz problem defined in Equation (2) is then equivalent
to the first-order system

∂zψ(z) = Aψ(z) with ψ =

(
∂zT
σ∇T

)
.

In [18] spectral properties of the operator A are established in order to de-
rive exact solutions of the generalized Graetz problem on infinite geometries of
the type Ω×R (unbounded ducts at both ends) involving a jump in the bound-
ary conditions on ∂Ω. It is proved that the spectrum consists of the eigenvalue
0 and two countable sequences of eigenvalues, one positive (downtream) and
one negative (upstream) going both to infinity. Numerical approximations of
this exact solution are given for axisymmetrical geometries.

However, on a semi-infinite duct Ω×[0,+∞), the projection of the entrance
condition on the eigenmodes may provide non-zero coefficients associated to
downstream modes. These coefficients yield a T (z) that is unbounded as z goes
to +∞. The objective of the present work is then to provide a mathematical
and numerical framework to solve the generalized Graetz problem on a semi-
infinite duct that is adapted to any geometry of Ω. As a consequence of the
forthcoming analysis, it is proved that the temperature components (Tn) of
the upstream (resp. downstream) eigenmodes form a basis of L2(Ω). This
analysis also provides a framework suitable to solve the problem on ducts of
finite length. Error estimates for the operators induced on finite dimensional
spaces associated to N upstream (or downstream) eigenmodes are provided.
Finally a numerical implementation is proposed using a parametrization of the
orthogonal of kerA. Numerical examples provide a showcase of the power of
the method.

The generalized Graetz problem is described in detail in Section 1, results
obtained in [18] are recalled, and our main result (Theorem 1) is stated. In
Section 2 we propose an equivalent formulation of this Theorem in the setting
of finite sequences. In Section 3, our main result is proved in Proposition 2.
Proposition 4 studies how the solution can be approximated when only the first
modes of the operator A are known. These estimates are crucial in numerical
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studies since only a part of the whole spectrum is computed. In Section 4 we
solve different problems in semi-infinite and finite cylinders, and we show how
the inequalities proved in Proposition 4 allow to obtain a priori inequalities
on numerical approximations. After detailing the algorithm we use, Section 5
presents some of the numerical results we obtained.

1 Setting the problem

1.1 Spectral analysis

We recall the definition of the Sobolev spaces L2(Ω) and H1(Ω) on a smooth
domain Ω. For that purpose, define the scalar products of functions:

(u, v)0 =

∫

Ω

uv̄ dx and (u, v)H1(Ω) =

∫

Ω

uv̄ dx +

∫

Ω

∇u∇v̄ dx.

Then L2(Ω) (resp. H1(Ω)) is defined as the subspace of measurable functions
on Ω such that their L2(Ω) (resp H1(Ω))) norm induced by the corresponding
scalar product is bounded. We also recall that the Sobolev space H1

0(Ω) is
defined as the closure of the space of smooth functions with compact support
for the H1(Ω) norm and that it can be identified with the subspace of functions
of H1(Ω) that are equal to zero on ∂Ω. In what follows the space H1

0(Ω) is
endowed with the scalar product

(u, v)1 =

∫

Ω

σ∇u∇v̄ dx

that defines a norm equivalent to the usual norm, thanks to the coercivity
conditions (1) and the Poincaré inequality.

We define H = L2(Ω)× (L2(Ω))2 and for every ψi ∈ H, we use the notation
ψi = (Ti,pi) throughout this paper. Once endowed with the scalar product

(ψ1|ψ2)H =

∫

Ω

cT1T̄2 + σ−1p1p̄2 dx,

the vector space H is an Hilbert space. Denote Hdiv(Ω) the space defined by

Hdiv(Ω) = {p ∈ (L2(Ω))2 such that div(p) ∈ L2(Ω)}

and define the unbounded operator A : D(A) = H1
0(Ω)× Hdiv(Ω)→ H as

A : ψ = (T,p) 7→ Aψ = (hT − c−1div(p), σ∇T ) ∈ H.

A is a self-adjoint operator with a compact resolvent and hence is diagonal
on a Hilbertian basis of H. It is shown in [18] that the spectrum of A is
Sp(A) = {0} ∪ {λn;n ∈ Z∗}, where the λn are eigenvalues of finite order that
can be ordered as follows:

−∞← λ−n ≤ . . . λ−1 ≤ λ0 = 0 ≤ λ1 · · · ≤ λn → +∞.


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The kernel of A consists of vectors of the form (0,p) ∈ D(A) with div(p) = 0.
It follows from Helmholtz decomposition that its orthogonal in H, the range
of A, is given by

R(A) = {(f, σ∇s) with (f, s) ∈ L2(Ω)× H1
0(Ω)}.

Because A is symmetric, it is bijective from D(A) ∩R(A) onto R(A).
Denote (ψn)n∈Z∗ an orthonormalized basis of R(A) composed of eigenvec-

tors ψn of A associated respectively to the eigenvalues λn 6= 0, then each
ψn = (Tn,pn) verifies:

{
λnpn = σ∇Tn,

λ2nTn + c−1div(σ∇Tn)− hλnTn = 0,
(5)

and for every n,m ∈ Z∗:
∫

Ω

cTnTm +
1

λnλm
σ∇Tn∇Tm = δnm,

where δnm stands for the Kronecker’s symbol.
The diagonalization of the operator A ensures that if ψ|z=0 ∈ R(A) is given,

there exists a unique ψ(z) ∈ C0(I,R(A)) that verifies in the weak sense

∂zψ(z) = Aψ(z) ψ(0) = ψ|z=0 ,

where verifying the above differential equation in the weak sense is tantamount
to verifying
∫

I

(ψ(z)| − ∂zX(z))H dz =

∫

I

(ψ(z)|AX(z))H dz ∀X ∈ C1
c (I,D(A) ∩R(A)).

Moreover this unique ψ(z) verifies the equation

ψ(z) =
∑

n∈Z∗

(ψ(0)|ψn)Hψne
λnz.

Coming back to the original setting, if T|z=0 ∈ H1
0(Ω) and ∂zT|z=0 ∈ L2(Ω)

are given, then there exists a unique T (z, ξ) ∈ C0(R,H1
0(Ω)) ∩ C1(R,L2(Ω))

solution of (2) which is given by

ψ(z) =
∑

n∈Z∗

(ψ(0)|ψn)Hψne
λnz, ψ(z) =

(
∂zT (z)
σ∇T (z)

)
, ψ|z=0 ∈ R(A). (6)

As a remark, following [18], if the initial boundary conditions are slightly
less regular, that is T|z=0 ∈ L2(Ω) and ∂zT|z=0 ∈ H−1(Ω), then there is still a
unique solution to (2) in C0(R,L2(Ω)) ∩ C1(R,H−1(Ω)), given by

ψ̃(z) =
∑

n∈Z∗

(ψ̃(0)|ψn)Hψne
λnz, with ψ̃(z) =

(
T (z)
σ∇s(z)

)
, (7)
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where, for any z (and specially for z = 0), s(z) is the unique solution in H1
0(Ω)

of
div(σ∇s) = chT − c∂zT.

We remark that the previous equation determines uniquely s|z=0 and hence
ψ|z=0 from the knowledge of T|z=0 and ∂zT|z=0 . Of course, if the initial conditions

are regular enough, then ψ and ψ̃ are linked by ψ = ∂zψ̃.

1.2 Main result

Following the previous discussion, if the problem is set on the semi infinite
duct Ω× R−, the initial conditions T|z=0 and ∂zT|z=0 determine uniquely ψ|z=0

(or ψ̃|z=0) and hence any value of ψ(z). But in general this set of conditions
yields a T (z) that may be unbounded as z goes to −∞. A natural question
to ask is then, given T|z=0 (resp. ∂zT|z=0) in L2(Ω), is it possible to find ∂zT|z=0

(resp T|z=0 ) such that T (z) stays bounded for z going to infinity ?
We reformulate this question as: Given f ∈ L2(Ω), is it possible to find an

s ∈ H1
0(Ω) (preferably unique) such that ψ = (f, σ∇s) verifies:

(ψ|ψn)H = 0 for all n < 0 ?

The answer to this question is given by the following Theorem, which is a
consequence of Proposition 2

Theorem 1. Given f ∈ L2(Ω), there exists a unique sequence u = (ui)i∈N∗

such that
f =

∑

i>0

uiTi.

In this case, setting s ∈ H1
0(Ω) as s =

∑
i>0 λ

−1
i uiTi ensures that the de-

composition of (f, σ∇s) on the eigenmodes of A only loads positive eigenvalues
and hence goes to 0 as z goes to −∞. Of course, changing z into −z (or equiv-
alently changing the sign of h) transforms the problem from a decomposition
on the downstream modes to a decomposition on the upstream modes.

2 Decomposition on the upstream modes

2.1 Isomorphism with the space of sequences

The choice of an Hilbertian basis induces an isomorphism between R(A) and
the space of square summable sequences. Denote the discrete l2(Z∗) and h1(Z∗)
scalar product, defined for complex sequences a = (an)n∈Z∗ and b = (bn)n∈Z∗

as
(a|b)l2(Z∗) =

∑

n∈Z∗

anb̄n and (a|b)h1(Z∗) =
∑

n∈Z∗

λ2nanb̄n

and define the l2(Z∗) (resp. h1(Z∗)) Hilbert space as the subspace of complex
sequences such that their l2(Z∗) (resp. h1(Z∗)) norm is bounded.


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The mapping

χ : l2(Z∗) → R(A)
a 7→

∑

i∈Z∗

aiψi

with adjoint χ⋆ : ψ 7→ ((ψ|ψn)H)n∈Z∗ is an isometry, i.e both χχ⋆ and χ⋆χ are
the identities of their respective spaces. Moreover χ(h1(Z∗)) = R(A) ∩D(A)
and χ⋆(R(A)∩D(A)) = h1(Z∗). Of course, this change of variable diagonalizes
A in the sense that if D is the operator

D : h1(Z∗) → l2(Z∗)
a 7→ (λnan)n

then

A = χDχ⋆.

2.2 Reformulation of the problem in the setting of se-

quences

In order to reformulate our problem in a discrete setting, let us define the
following operators

Definition 1. Define P1 and P2 as

P1 : R(A) −→ L2(Ω)
(f, σ∇s) 7−→ c1/2f

P2 : R(A) −→ H1
0(Ω)

(f, σ∇s) 7−→ s

with adjoints defined by

P ⋆
1 : L2(Ω) −→ R(A)

f 7−→ (c−1/2f, 0)
P ⋆
2 : H1

0(Ω) −→ R(A)
s 7−→ (0, σ∇s).

Then trivially PiP
⋆
i = Id, P ⋆

i Pi is a projection and P ⋆
1P1 + P ⋆

2P2 = Id.
Moreover PiP

⋆
j = 0 if i 6= j.

We shall also need the following technical definition

Definition 2. For m < M in Z∗, denote l2([[m,M ]]) the subspace of l2(Z∗)
of sequences a such that an = 0 if n /∈ [[m,M ]], and define the projection
Πm,M : l2(Z∗)→ l2([[m,M ]]) by

(Πm,Mu)i =

{
ui if m ≤ i ≤M
0 if i < m or i > M.

For m > 0 the space l2([[m,∞[[) is the subspace of l2(Z∗) of sequences a such
that an = 0 if n < m.


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Proposition 1. Define the operator K : l2(Z∗) −→ l2(Z∗) by

K = χ⋆P ⋆
1P1χ.

Then K = K2 (K is an orthogonal projection). Moreover proving Theorem 1
is equivalent to proving that

For every a ∈ l2(Z∗) such that Ka = a there is a unique u ∈ l2([[1,∞[[) such that Ku = a

Proof. The fact that K2 = K follows from the fact that χχ⋆ = Id and P1P
⋆
1 =

Id. By definition of P1, χ, K for every f ∈ L2(Ω) and u = (ui)

f =
∑

i

uiTi ⇔ f = c−1/2P1χu⇔ χ⋆P ⋆
1

√
cf = Ku,

where the last equivalence is proven using the definition of K for the direct
implication and the property (P1χ)(χ

⋆P ⋆
1 ) = Id for the reciprocal implication.

We now claim that

Ka = a⇔ ∃f ∈ L2(Ω) such that a = χ⋆P ⋆
1

√
cf.

Once again, the reciprocal implication is proven by applying K on both sides
of the identity and using (P1χ)(χ

⋆P ⋆
1 ) = Id, whereas the direct implication is

proven by setting f = c−1/2(P1χ)a and using

a = Ka = χ⋆P ⋆
1P1χa = χ⋆P ⋆

1

√
cf.

In order to prove Theorem 1 using the equivalence from Proposition 1,
we have to translate the eigenproblem equation in the setting of the space of
sequences which is the purpose of the forthcoming theorem.

Theorem 2. For each a ∈ h1(Z∗),b ∈ l2(Z∗), we have

KD−1K = 0, (8)

(Id−K)D(Id−K)a = 0, (9)

and

(KDKa|b)l2 =
∫

Ω

h(P1χa)(P1χb) dx. (10)

Proof. By definition of A, for any (f, σ∇s) ∈ D(A)

A
(

f
σ∇s

)
=

(
hf − c−1div(σ∇s)

σ∇f

)
.

This transforms into

AP ⋆
1 (f) = P ⋆

1 (hf) + P ⋆
2 (c

−1/2f), AP ⋆
2 (s) = P ⋆

1 (−c−1/2div(σ∇s)). (11)
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We prove (9) using P2P
⋆
1 = 0 and multiplying the second equation of (11)

by P2:

P2AP ⋆
2 = 0⇒ P2(χDχ

⋆)P ⋆
2 = 0⇒ χ⋆P ⋆

2 (P2χDχ
⋆P ⋆

2 )P2χ = 0.

This in turn implies that for any a ∈ h1(Z∗), (Id −K)D(Id −K)a = 0 since
Id−K = χ⋆P ⋆

2P2χ.
In order to prove (10), use P1P

⋆
2 = 0 and multiply the first equation of (11)

by P1. Then for each f ∈ P1(R(A) ∩D(A))
P1(χDχ

⋆)P ⋆
1 (f) = P1AP ⋆

1 (f) = hf.

If a ∈ h1(Z∗) then f = P1χa ∈ P1(R(A) ∩D(A)), the above equation applies
and

hP1χa = P1χDKa

⇒ (hP1χa, P1χb)0 = (P1χDKa, P1χb)0 = (χ⋆P ⋆
1P1χDKa,b)l2 = (KDKa,b)l2

In order to prove (8), multiply the second equation of (11) by P1A−1 in order
to get

0 = P1A−1P ⋆
1 (div(c

−1/2σ∇s)) = P1χD
−1χ⋆P ⋆

1 (c
−1/2div(σ∇s)) ∀s ∈ H1

0(Ω).

For any b ∈ l2(Z∗) define f = P1χb ∈ L2(Ω). There exists s ∈ H1
0(Ω) such

that div(σ∇s) = c1/2f , and the above equation amounts to KD−1Kb = 0.

3 Properties of the sequential operators

3.1 The case h = 0

It is interesting to understand what happens in the purely diffusive case where
h = 0. In this case, denote (Sn) the eigenvectors of the Laplacian associated
to eigenvalues (µ2

n) with µn > 0:

−c−1div(σ∇Sn) = µ2
nSn with

∫

Ω

cSiSj dx = δij and Sn ∈ H1
0(Ω).

Then the eigenvectors of A are given exactly by

ψ±n =
1√
2

(
Sn

±µ−1
n σ∇Sn

)
associated to the eigenvalues ± µn,

and hence Tn = T−n = 1√
2
Sn. In this case the restriction of K to the finite

dimensional space l2([[−N,N ]]) has the following simple form. Denote ei =
(δin)n∈Z∗ the ith vector of the canonical basis of the space of sequences. Then

(Kei|ej)l2(Z∗) = (P1χei|P1χej)0 = (P1

(
Ti

µ−1
i σ∇Ti

)
|P1

(
Tj

µ−1
j σ∇Tj

)
)0

=

∫

Ω

cTiTj dx.


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In the particular case h = 0,

∫

Ω

cTiTj dx =

∫

Ω

c
1√
2
S|i|

1√
2
S|j| dx =

1

2
δ|i|,|j|,

and we have

Π−N,NKΠ−N,N =
1

2

(
Id Id†

Id† Id

)
, Id† =



0 · · · 1
0 � 0
1 · · · 0


 , (Id†)i,j = δi+j,N+1.

In this setting, solving the problem of Proposition 1 is trivial. For any sequence
a = (an)n ∈ l2(Z∗), Ka = a means that a−n = an and it is then sufficient to
take u = (un)n defined by:

for n < 0, take un = 0 and for n > 0, take un = (an + a−n) = 2an

This simple example is important to point out, since the case h 6= 0 is just a
compact perturbation of the case h = 0. Indeed, coming back to equation (5),
at order 0 when λn goes to infinity, we have:

λ2nTn + c−1div(σ∇Tn) = 0

and hence, when n goes to infinity, one expects λ±n ≃ ±µn and T±n ≃ 1√
2
Sn,

see Remark 1 for a precise statement of this assertion.

3.2 Existence and uniqueness of the solution

The next result is the main ingredient in the proof of Theorem 1.

Proposition 2. Suppose that m ∈ N∗, M > m possibly with M = +∞ and
denote π = Πm,M .

For any a ∈ l2(Z∗) there exists a unique u ∈ l2([[m,M ]]) solution of πKu =
πa. Moreover this u satisfies

‖u‖l2(Z∗) ≤ (2 +
‖h‖L∞(Ω)

λm
)‖πa‖l2(Z∗). (12)

Moreover, if a = Ka, then P1χu is the L2 orthogonal projection of P1χa
on the space V ect(c1/2Tm, c

1/2Tm+1, . . . , TM).
Additionnaly, if m = 1 and M = +∞ and a = Ka, then we also have

Ku = a.

As an immediate corollary, the last assertion of this Proposition proves
Theorem 1 via the equivalence pointed out in Proposition 1.

Proof. We first suppose that M < +∞, then Im(π) = l2([[m,M ]]) is a finite
dimensional subspace on which the endomorphism K̄ = πKπ is real symmetric,
hence diagonalisable. It is sufficient to show that, on this space any eigenvalue
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of K̄ is greater than C = (2 +
‖h‖L∞(Ω)

λm
)−1 in order to prove existence of u,

uniqueness and the bound in the l2 norm.
Let ρ be an eigenvalue of K̄ and v an associated normalized eigenvector:

πKπv = ρv, (v|v)l2 = 1 and πv = v. Since

ρ = (πKπv|v)l2 = (Kπv|πv)l2 = (Kπv|Kπv)l2 = ‖Kv‖2l2 ,

then 0 ≤ ρ ≤ 1. In order to prove the lower bound on the l2 norm, recall that
since v is a finite sequence then (10) applies and

|(KDKv|v)l2| = |
∫

Ω

h(P1χv)
2 dx| ≤ ‖h‖L∞(Ω)‖P1χv‖20 = ‖h‖L∞(Ω)‖Kv‖2l2(Z∗).

using (9) ((Id−K)D(Id−K)v|v)l2 = 0 and πD = Dπ, we have

(KDKv|v)l2 = (2ρ− 1)(Dv|v)l2

Since |(Dv|v)l2| = |
∑M

n=m λnvnvn| ≥ λm(v|v)l2 ≥ λm, we have

|λm(2ρ− 1)| ≤ ‖h‖L∞(Ω)‖Kv‖2l2(Z∗) = ‖h‖L∞(Ω)ρ (13)

Which in turns means that ρ ≥ C .
Consider now the case M = +∞ where any a ∈ l2([[1,+∞[[) is the strong

l2 limit of Πm,pa as p goes to infinity. Passing to the limit, we recover

(πKπa, a)l2(Z∗) ≥ C‖a‖2.

The Lax-Milgram theorem applies and πKπ : l2([[m,+∞[[) → l2([[m,+∞[[) is
a bijection with a continuous inverse bounded by C in the operator norm.

We now turn our attention to the geometrical interpretation of u. By
definition, c1/2Ti = P1χei, where ei is the i

th canonical basis vector of l2(Z∗),
hence, if a = Ka, for all i ∈ [[m,M ]]

(P1χa− P1χu|c1/2Ti) = (P1χa− P1χu|P1χei) = (χ⋆P ⋆
1P1χ(a− u)|ei) = (Ka−Ku|ei)

= (a−Ku|ei) = (a−Kπu|πei) = (πa− πKπu|ei) = 0

Hence P1χu ∈ V ect(c1/2Ti)i=m..M is the L2 orthogonal projection of P1χa
on V ect(c1/2Ti)i=m..M .

We finally prove that if m = 1,M = +∞ and Ka = a, then Ku = a.
Define b = Ku − a = K(u − a), then Kb = b. Since we already have
πKu = πa, then πb = 0. Using (8): KD−1K = 0, we have

0 = (KD−1Kb|b) = (D−1Kb|Kb) = (D−1b|b) =
∑

i<0

λi|bi|2.

Since all the λi are strictly negative, then bi = 0 for all i < 0 and since πb = 0,
we finally have b = 0.
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Remark 1. The bound (12) is indeed sharp, since, in the case h = 0, we have
u = 2πa. Indeed, in this case, the matrix Πm,MKΠm,M = 1/2Id. Moreover,
when λm > ‖h‖L∞(Ω)/2, the bound (13) translates into:

2− ‖h‖L∞(Ω)

λm
≤ ρ−1 ≤ 2 +

‖h‖L∞(Ω)

λm
.

Hence, when m goes to +∞ and M > m, every eigenvalue of the matrix
Πm,MKΠm,M goes to 1

2
. Anticipating on the results of Proposition 3 that as-

serts that every off-diagonal termKij of Πm,MKΠm,M is bounded like ‖h‖L∞(Ω)/(λi+
λj), we can conclude that the matrix Πm,MKΠm,M tends towards the matrix
1

2
Id as m goes to +∞. Hence, as expected, when m goes to infinity, the effect

of h wears off and K behaves as if the compact perturbation h was inexistent.

3.3 Bounds for the approximation

The result of Proposition 2 states that the sought u solves the equation

πKπu = πa

with π = Π1,∞. But in practice, we can only compute this matrix for π = Π1,N

with a finite N . Therefore, we wish to estimate the resulting error. For that
purpose, we first prove that the off-diagonal terms of πKπ are small.

Proposition 3. For i = 1, 2, let mi,Mi ∈ N∗, and denote πi = Πmi,Mi
. We

assume that π1π2 = 0, (or equivalently [[m1,M1]] ∩ [[m2,M2]] = ∅). Then

‖π1Kπ2u‖l2(Z∗) ≤
‖h‖L∞(Ω)

λm1 + λm2

‖π2u‖l2(Z∗) ∀u ∈ l2(Z∗).

Proof. Let ρ be the largest eigenvalue on Im(π2) of

π2Kπ1Kπ2v = ρv with v = π2v ∈ Im(π2),

where v is a corresponding eigenvector such that ‖v‖l2 = 1. We claim that it
is sufficient to show that

0 ≤ ρ ≤
( ‖h‖L∞(Ω)

λm1 + λm2

)2

(14)

Indeed, the inequality to be proven in Proposition 3 is, for all u ∈ l2Z∗:

(π2Kπ1Kπ2u|π2u)l2 = ‖π1Kπ2u‖2l2(Z∗) ≤
( ‖h‖L∞(Ω)

λm1 + λm2

)2

‖π2u‖2l2(Z∗),

which is exactly tantamount to proving (14). First, ρ is positive since

ρ = (π2Kπ1Kπ2v,v) = (π1Kπ2v, Kπ2v) ≥ 0.
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In order to prove the upper bound on ρ, set a = π1Kπ2v and b = π2v, then
trivially π1Kb = a and the eigenvector equation reads π2Ka = ρb. Moreover,
since D is a diagonal operator that commutes with π1 and π2, then

a = π1a⇒ Da = π1Da and b = π2b⇒ Db = π2Db

and hence

(DKa|b)l2 + (KDa|b)l2 = (Ka|Db)l2 + (Da|Kb)l2 = (Ka|π2Db)l2 + (π1Da|Kb)l2

= (π2Ka|Db)l2 + (Da|π1Kb)l2 = ρ(b|Db)l2 + (Da|a)l2 .

Since π1π2 = 0, then (Da|b)l2 = 0 and (9) turns into

(KDKa|b)l2 = (DKa|b)l2 + (KDa|b)l2 .

On the other hand, (10) reads

(KDKa|b)l2 =

∫

Ω

h(P1χa)(P1χb) dx ≤ ‖h‖L∞(Ω)‖(P1χa)‖0‖(P1χb)‖0
≤ ‖h‖L∞(Ω)‖a‖l2(Z∗)‖b‖l2(Z∗).

Collecting these three equations yields

ρ(b|Db)l2 + (Da|a)l2 ≤ ‖h‖L∞(Ω)‖a‖l2(Z∗)‖b‖l2(Z∗). (15)

Since π2b = b, then (b|Db)l2 =
∑M2

i=m2
λi|bi|2 ≥ λm2‖b‖2l2 . Similarly (a|Da)l2 ≥

λm1‖a‖2l2 . Moreover, using ‖b‖ = ‖π2v‖ = 1 and

‖a‖2l2 = (π1Kπ2v|π1Kπ2v)l2 = (π2Kπ1Kπ2v|v)l2 = ρ,

Equation (15) turns into

ρ(λm1 + λm2) ≤ ‖h‖L∞(Ω)
√
ρ,

which is exactly (14).

The following proposition precisely states the error made when computing
u with the limited information of the k first modes.

Proposition 4. For any a ∈ l2(Z∗), for any k ∈ N∗, define π = Π1,k. Define,
by Proposition 2, ûf ∈ l2([[1, k]]) as the unique solution to πKû = πa.

Define u ∈ l2([[1,+∞]]) the only solution to Π1,∞Ku = Π1,∞a, i.e. u = û

when k = +∞.
There exists a constant C > 0 independent of k and a, there exists k0 ∈ N∗

such that for all k ≥ k0,

‖u− û‖l2(Z∗) ≤ C‖(Π1,∞ − π)(a−Kû)‖l2(Z∗),

‖πu− û‖l2(Z∗) ≤
C

λk
‖u− û‖l2(Z∗).
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Corollary 1. When a = χ⋆P ⋆
1 f , if fproj is the L2 orthogonal projection of f

on the space V ect(c1/2T1, . . . , c
1/2Tn) then

‖u− û‖l2(Z∗) ≤ C‖f − fproj‖0

Indeed when a = χ⋆P ⋆
1 f , then Ka = a, P1χa = f and thanks to Proposi-

tion 2 P1χû = fproj. The corollary is then simply proven by

‖(Π1,+∞−π)(a−Kû)‖l2(Z∗) ≤ ‖(a−Kû)‖l2(Z∗) = ‖K(a−û)‖l2(Z∗) = ‖P1χa−P1χû‖l2(Ω).

Proof. of Proposition 4. Define π̃ = Πk+1,+∞, d = u− û, then the equations

πKû = πa and (π̃ + π)Ku = (π + π̃)a

yield the following system

{
(πKπ) (πd) + (πKπ̃) (π̃d) = 0
(π̃Kπ) (πd) + (π̃Kπ̃) (π̃d) = π̃a− (π̃Kπ) û

Thanks to Proposition 2, the operators πKπ (resp. π̃Kπ̃) are invertible
with an inverse bounded from above with a constant independent of k and
then {

‖πd‖l2 ≤ C‖ (πKπ̃) π̃d‖l2
‖π̃d‖l2 ≤ C (‖π̃(a−Kπû)‖l2 + ‖ (π̃Kπ) πd‖l2)

Since π̃π = 0, then Proposition 4 applies to πKπ̃ and π̃Kπ and

‖πd‖l2 ≤
C

λk
‖π̃d‖l2 and (1− C

λ2k
)‖π̃d‖l2 ≤ C‖π̃(a−Kû)‖l2

Letting k big enough so that 1 − C
λ2
k

> 1
2
and 1

λk

< 1 there exists another

constant, also denoted by C such that

‖d‖l2 = ‖πd‖l2 + ‖π̃d‖l2 ≤ C‖π̃(a−Kû)‖l2 and ‖πd‖l2 ≤
C

λk
‖d‖l2 .

4 Solving semi-infinite and finite problems

4.1 The semi-infinite case with L2 initial conditions

For a given Tini ∈ L2(Ω), we are interested in solving in the space C0(R−,L2(Ω))∩
C1(R−,H−1(Ω)) the following equation:

{
c∂zzT − div(σ∇T )− Pev∂zT = 0

T|z=0 = Tini and lim
z→−∞

T (z) = 0 (16)
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As developped in (7) in Section , T solves the differential equation (16), if and
only if

ψ(z) = (T (z), σ∇s) ∈ C0(R−,R(A))
verifies ψ(z) =

∑
n∈Z∗ une

λnψn with some sequence u = (un)n∈Z∗ ∈ l2(Z∗) that
verifies the boundary conditions in z = 0 and z = −∞, that is:

Tini =
∑

n∈Z∗

unTn and un = 0 ∀n < 0.

As stated in (6) in Section , a similar reduction can be performed if Neumann
boundary conditions are enforced in z = 0, that is if

∂zT|z=0 = Fini

is given instead of the value of T|z=0 . In this case the problem would turn into

Fini =
∑

n∈Z∗

unTn and un = 0 ∀n < 0 and ψ = (∂zT, σ∇T ).

Moreover, solving this equation for positive z instead of negative z can be done
by changing z into −z, or equivalently by multiplying v by −1 which does not
change the analysis.

Coming back to the original Dirichlet problem, setting a = χ⋆P ⋆
1

√
cTini ∈

l2(Z∗), we have Ka = a and u is given by Theorem 1 as the unique solution
to

Ku = a and u ∈ l2([[1,∞]]).

Hence the existence and uniqueness of T (z) in the considered space. In prac-
tice, one is able to compute only the k first eigenvectors. We wish to estimate
the error made by an approximation of T (z) if only the k first eigenmodes are
considered. The following proposition sums up every property proved earlier.

Proposition 5. Suppose that (λn, Tn)n=1..k, the k first positive eigenvalues/eigenvectors

ofA have been computed. Define â = (
∫
Ω
cTiniTn)n=1..k, set K̂ = (

∫
Ω
TiTj)1≤i,j≤k

and find û = (ûn)n=1..k the unique solution to

K̂û = â . (17)

Define

T̂ (z) =
k∑

n=1

c−1/2ûne
λnzTn.

If T (z) denotes the unique solution to problem (16), then for all z ≤ 0 we have

‖T (z)− T̂ (z)‖0 ≤ C

(
eλ1z

λk
+ eλkz

)
‖√cTini −

√
cTproj‖0,

where
√
cTproj is the L2-orthogonal projection of

√
cTini on the space spanned

by V ect(
√
cTn)n=1..k.
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We remark that since we are interested in the semi-cylinder defined by
z ≤ 0, the inequality gets better as z goes to −∞ or as k grows.

Proof. Set π = Π1,k, if a = χ⋆P ⋆
1

√
cTini then the solution of (16) is given by

(T (z), σ∇s(z)) =
∑

n∈Z∗

c−1/2une
λnzψn,

where u = (un)n∈Z∗ is given byKu = a and u ∈ l2([[1,+∞[[), see Proposition 2.

Extending by zero û and â in l2(Z∗) then â = πa, K̂ = πKπ and û verifies

πKπû = πa and û ∈ l2([[1, k]]).

Hence, û is unique and determined by Proposition 2. Moreover, Corollary 1
states that

‖u− û‖l2 ≤ C‖√cTini −
√
cTproj‖0.

‖T (z)− T̂ (z)‖0 ≤ C

k∑

n=1

|un − ûn|2e2λnz + C
∑

n>k

|un − ûn|2e2λnz

≤ C‖πu− û‖2l2e2λ1z + C‖u− û‖2l2e2λkz.

The conclusion follows from Proposition 4 since ‖πu− û‖l2 ≤
C

λk
‖u− û‖l2 .

4.2 The finite case with Dirichlet condition on both

ends

For given L > 0, T0, TL ∈ L2(Ω), we are interested in finding T ∈ C1([0, L],L2(Ω))∩
C0([0, L],H1

0(Ω)), solution to the following equation

{
c∂zzT + div(σ∇T )− Pev∂zT = 0 in [0, L]× Ω

T|z=0 = T0 and T|z=L
= TL

, (18)

In this problem, two boundary conditions are imposed, one on each end of
the finite cylinder. The mathematical proof of existence of solution is straight-
forward since this problem is the one of a three-dimensional Laplacian on
Ω × [0, L] with a transport term and Dirichlet boundary condition. We are
looking here for an effective way to compute the solution of this problem by
performing a reduction to a problem in two dimensions.

The first idea is to use upstream modes (negative eigenvalues) for the left-
most boundary condition (z = 0), and to use downstream modes (positive
eigenvalues) for the right-most boudary condition (z = L). Some corrections
must be added in order to take into account the influence of each boundary
on the other.
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Proposition 6. Consider T0 and TL in L2(Ω). Then there exists a unique
(an)n∈Z∗ ∈ l2(Z∗) such that

∑

n<0

anTn +
∑

n>0

ane
−LλnTn = T0 (19)

and ∑

n<0

ane
LλnTn +

∑

n>0

anTn = TL. (20)

The solution of Problem (18) is then given by

T (z) =
∑

n<0

ane
λnzTn +

∑

n>0

ane
λn(z−L)Tn for 0 ≤ z ≤ L.

Proof. For a given sequence a ∈ l2(Z∗), denote a+ = (an)n>0 and a− = (an)n<0.
We also introduce the operators

U± : l2(Z∗±) −→ L2(Ω) C± : l2(Z∗±) −→ l2(Z∗±)

a± = (an)n 7−→
∑

±n>0

anTn and a± = (an) 7−→ (ane
∓Lλn)±n>0.

Theorem 1 implies that U+ and U− are one-to-one. Then the two equations
(19) and (20) read

(
U− U+C+

U−C− U+

)(
a−

a+

)
=

(
T0
TL

)
. (21)

It remains to prove that the operator W from l2(Z∗−) × l2(Z∗+) to L2(Ω)2

defined by

W =

(
U− U+C+

U−C− U+

)
=

(
Id U+C+(U+)−1

U−C−(U−)−1 Id

)(
U− 0
0 U+

)

is invertible. The endomorphism W0 of (L2(Ω))2 defined by

W0 =

(
Id M+

M− Id

)
with M± = U±C±(U±)−1

is invertible if and only if Id−M+M− and Id−M−M+ are invertible which is
the case since the operator M± is diagonal in the basis (Tn)±n>0 with largest
eigenvalue e∓Lλ±1 < 1. As a conclusion, the operator W is invertible, hence
the equation (21) admits a unique solution (a−, a+).

Remark 2. A physical interpretation of the operator M± is the following.
The operatorM+ acts on an element of L2(Ω) by decomposing this element on
the downstream modes, and damps the modes with a damping factor corre-
sponding to a length L. The operator M− has the same interpretation except
that upstream modes are concerned. These operators model the influence of
one boundary condition on the other boundary of the cylinder.
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Equation (21) can be rewritten

(
Id M+

M− Id

)(
U+a+

U−a−

)
=

(
T0
TL

)
. (22)

Such equation is of type

(Id+Mr)x = y (23)

where Mr =

(
0 M+

M− 0

)
is a reflection operator associated with the influ-

ence of the boundary conditions on the mode’s amplitude. In our case the
spectral radius of Mr is smaller than 1, and (23) can be solved using a power
series:

x = (Id+Mr)
−1y = y −Mry +M2

r y −M3
r y + ...

As stated above, this amounts to write that (in a first approximation) the
solution is x ≈ y: x is obtained by decomposing the boundary condition at
z = 0 along the downstream modes, and the boundary condition at z = L along
the upstream modes. The next term in the power series reads x ≈ y −Mry,
this takes into account the corrective terms coming from the influence of each
boundary condition on the other boundary of the cylinder. The higher order
term M2

r y takes into account the correction of the corrective terms and so
on. In this sense our solution is a multi-reflection method, since each step
provides an incremental reflection of the boundary influence. Nevertheless, as
opposed to the image methods used for the computation of the Green functions
in finite domains for which the convergence is algebraic, and thus rather poor,
the successive terms in the sequence are exponentially decaying, providing an
exponential convergence of our multi-reflection finite domain operator.

5 Numerical results

We present in this section more details on the implementation of the method,
and illustrate the results in different configurations.

5.1 Implementation

The main obstacle to the numerical resolution of the eigenproblem

Aψ = λψ (24)

is the existence of the kernel of A which is infinite dimensional, since this pro-
hibits applying effective numerical methods for the eigenvalues computation.
The resolution can become effective when one restricts to a subspace of R(A).
We have seen in section 1 that the space R(A) is given by

R(A) = {(f, σ∇s) with (f, s) ∈ L2(Ω)× H1
0(Ω)}.
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We introduce the space G as

G = {(f, σ∇s) with (f, s) ∈ H1
0(Ω)× H1

0(Ω)},

endowed with the norm

‖(f, σ∇s)‖G = ‖f‖H1
0(Ω) + ‖s‖H1

0(Ω).

It is clear that G is a dense subset of R(A) for the H norm, that D(A)∩R(A)
is a dense subset of G for the G norm and that G belongs to the domain of
A1/2 in the sense that

(Aψ|ψ)H =

∫

Ω

chT 2 + 2σ∇s · ∇T ≤ C‖ψ‖2G ∀ψ = (T, σ∇s) ∈ D(A) ∩ G.

Solving the eigenproblem of finding ψn ∈ D(A) ∩ R(A) such that for all ψ ∈
R(A)

(Aψn|ψ)H = λn(ψn, ψ)H,

amounts to solving it for all ψ ∈ G (by density of G in R(A)) and to seek
ψn ∈ G if one defines, for all ψi = (Ti, σ∇si) ∈ G

(Aψ1|ψ2)H =

∫

Ω

chT1T2 + σ∇s1 · ∇T2 + σ∇s2 · ∇T1. (25)

We recall that the H scalar product reads for all ψi = (Ti, σ∇si) ∈ G :

(ψ1, ψ2)H =

∫

Ω

cT1T2 + σ∇s1 · ∇s2. (26)

If one approximates H1
0(Ω) by -say- P 1 finite element spaces, equation (26)

allows to obtain the mass matrixM , and Equation (25) allows to assemble the
stiffness matrix A of the eigenproblem

Find X, λ such that AX = λMX,

which is the discrete version of the eigenproblem (24), set on the orthogonal
of the kernel of A.

5.2 Solving the eigenproblem

The eigenproblem Aψ = λψ, reduced to the generalized eigenvalue problem

AX = λMX,

is solved using Lanczos method [5]. This algorithm provides the n eigenmodes
whose associated eigenvalues are closest from zero (exepted 0 since we work
in the orthogonal of the kernel). We denote by N ′ the number of eigenmodes
associated to negative eigenvalues, and by N the number of eigenmodes asso-
ciated to positive eigenvalues. Due to non-symmetry reasons (because of the
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convective term) it is very likely that N ′ 6= N . One can of course restrict the
number of eigenmodes to min(N ′, N) but this was not considered here.

Let Tini ∈ L2(Ω). Consider k ∈ Z∗. We denote Tproj the approximation of
Tini by the first k upstream modes if k > 0, and by the first |k| downstream
modes if k < 0. In other words, Tproj is the projection of Tini on V ect(T1 . . . Tk)
when k > 0 and V ect(T−1 . . . T−k) when k < 0. Using the notations of Propo-
sition 4, we recall that Tproj (for example in the case k > 0) is computed
as

Tproj =
k∑

i=1

uiTi with πKπû = a and ai =

∫

Ω

TiniTi.

For a given value of k, the relative error is defined by

‖Tini − Tproj‖0
‖Tini‖0

. (27)

When N ′ upstream eigenmodes and N downstream eigenmodes are avail-
able, this allows to solve the problem in a cylinder of finite length. The com-
putation of the eigenmodes allows to obtain an approximation of the operator
W that appears at the left-hand side in Equation (21). The quantities a+ and
a− are then computed by solving Equation (21) in the least squares sense.

5.3 An axisymmetric case

We first consider an axisymmetric case. It allows a comparison with existing
methods. Reference eigenvalues are computed using the ”λ-analicity” method,
as presented in [19] in a simpler case. This method provides an implicit analyt-
ical definition of the eigenvalues that makes possible their computation up to
a given accuracy. The first eigenvalues were computed with this method with
a precision of 10−10, providing the reference eigenvalues, named ’analytical
eigenvalues’ in the sequel.

The domain Ω is the unit circle. The Peclet number is set to 10 and the
velocity is supported in the disc B centered at the origin and of radius r0 = 1/2.
The velocity profile v is parabolic, culminating at the origin with the value 2,
more precisely:

v(x, y) = 2(1− x2 + y2

r20
) on B.

The simulations were performed using Getfem [1] and Matlab. The problem
was discretized using P1 finite elements, on different meshes containing re-
spectively 164 points (mesh 0), 619 points (mesh 1), 2405 points (mesh 2)
and 9481 points (mesh 3).

We computed the 50 eigenvalues that are closest to zero (multiplicity
counted). These eigenvalues were compared with the analytical eigenvalues
corresponding to axisymmetric eigenmodes. These results are presented in
Figure 2. Note that the distribution of the eigenvalues is not symmetric with
respect to 0, due to the convective term. In this case there are 30 downstream
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modes, and 20 upstream modes. The relative error on the first upstream eigen-
value compared to the analytical eigenvalue, as a function of the mesh size is
presented in Figure 3.

0 10 20 30

−12

−10

−8

−6

−4

−2

0
negative eigenvalues

 

 

analytic
mesh 0
mesh 1
mesh 2
mesh 3

0 5 10 15 20
4

6

8

10

12
positive eigenvalues

 

 

analytic
mesh 0
mesh 1
mesh 2
mesh 3

Figure 2: Left: the first eigenvalues for the downstream modes; right: the first
eigenvalues for the upstream modes. The eigenvalues obtained for different dis-
cretizations are compared to the analytical eigenvalues (only for axisymmetric
modes, indicated in black)
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Figure 3: Numerical error for the first upstream eigenvalue, as a function of
the mesh size (log scale).

As an illustration of Theorem 1, we decompose an element Tini ∈ H1
0(Ω)

along the downstream modes, and along the upstream modes. The field Tini
is Tini(x, y) = (1− x2 − y2)(1 + 5x3 + xy). The total number of eigenvalues is
300. This computation uses the finest mesh mesh 3. We indicate in Figure 4
the relative error when the first k modes are taken into account, defined by
Equation (27).

As another illustration of Theorem 1, we decompose another element Tini ∈
L2(Ω) along the downstream modes, and along the upstream modes. The field
Tini is Tini(x, y) = 1 and the convergence of the projections when an increasing
number of modes taken into account is shown in Figure 5. Note that the
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Figure 4: The log10 of the relative error of the projection of a field Tini ∈ H1
0(Ω)

on the first k eigenmodes plotted as a function of k for the downstream modes
(left); the log10 of the relative error as a function of k for the upstream modes
(right).
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Figure 5: The log10 of the relative error of the projection of a field Tini ∈ L2(Ω)
on the first k eigenmodes plotted as a function of k for the downstream modes
(left); the log10 of the relative error as a function of k for the upstream modes
(right).

convergence is slower here than in the previous case (Figure 4), since in the
previous case, the element Tini belongs to H1

0(Ω) and in the present case to
L2(Ω) only. We recall Tini is projected on the space of eigenmodes which all
belong to H1

0(Ω) and even if it is possible to approximate elements of L2(Ω) by
elements of H1

0(Ω) in the L2 norm, phenomenom of slow convergence (similar
the well known Gibb’s effect) will occur.

5.4 A non-axisymmetric case

In order to illustrate the capabilities of our approach, we present an illustration
in a non-axisymmetric case.

The domain Ω is the unit circle. The Peclet number is set to 10 and the
velocity is contained in the disc B centered at the point (x0, y0) = (0.3, 0.2)
and of radius r0 = 1/2. The velocity profile v is parabolic in B culminating at
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(x0, y0) with the value 2 (see Figure 6):

v(x, y) = 2(1− (x− x0)2 + (y − y0)2
r20

) in B

Figure 6: Velocity profile.

The problem was discretized on a mesh containing 9517 vertices. We com-
puted the 50 eigenmodes that are closer to zero (multiplicity counted), see
Figure 7. In this case there are 31 downstream modes, and 19 upstream
modes.
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Figure 7: Left: the first eigenvalues for the downstream modes; right: the first
eigenvalues for the upstream modes.

We present in Figures 8 and 9 the first downstream and upstream eigen-
modes.

We document also the results of section 3 by showing the matrix Π−N ′,NKΠ−N ′,N

for different values of the Peclet number, see Figure 10.

5.5 A finite cylinder

The results of section 4.2 are documented here. The domain B, the Peclet
number and the velocity profile v are the same as in section 5.4. We address
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Figure 8: The first downstream eigenmodes.

the 3-dimensional problem in a cylinder of length L. Two boundary conditions
are imposed on the extremities of this cylinder:

T|z=0 = T0 and T|z=L
= TL,

where

T0(x, y) = 1B(x, y) and TL(x, y) = 1− x2 − y2.

This problem was discretized on a mesh comprising 9517 vertices. The 1000
eigenvalues closest to 0 are computed (527 downstream modes and 473 up-
stream modes). The matrix W defined in section 4.2 was assembled, the se-
quences a+ and a− were computed, and the value of T (z) at different sections,
corresponding to different values of z are illustrated in Figures 11 and 12 for
L = 1 and L = 5 respectively. Note that since the incoming condition T0
is not in H1

0(Ω), the initial condition is poorly approximated (oscillations are
visible). Note also that the downstream modes are damped slower than the
upstream modes. The largest downstream eigenvalue is λ−1 ≈ −0.704 which
gives a characteristic length of ln(2)/|λ−1| ≈ 0.98, while the smallest upstream
eigenvalue is λ1 ≈ 3.28 which gives a characteristic length of ln(2)/λ1 ≈ 0.21.
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Figure 9: The first upstream eigenmodes.

Conclusion

It has been shown that the decomposition on the upstream (or downstream)
modes is not only mathematically possible but also numerically feasible. In-
deed, thanks to the bounds of Proposition 4, standard error analysis, as the
one of Proposition 5, may be performed. Such analysis leads to effective al-
gorithms that improve the state of the art on the generalized Graetz problem
by many ways. First, non axisymmetrical geometries are allowed. Second,
semi-infinite ducts and bounded ducts geometries are studied. Third, effective
error analysis is available. We presented numerical examples that showcase
the power of this method.

All these improvements pave the way to numerous applications, as for ex-
ample, optimization of the velocity v in order to maximize (or minimize) heat
transfer under constraints (for instance viscosity constraints if the velocity is
the solution of a Stoke’s problem). Nevertheless, some expected results still
lack. For instance, the theory handles well L2 bounds when L2 initial data is
given. But there isn’t, as of today, any direct way to show H1

0 bounds when
H1

0 initial data is given. An other improvement would be to understand if the
information given by the eigenvectors with a positive eigenvalue is of any help
when trying to decompose on the downstream modes. Indeed the algorithm
we propose simply dumps this information in order to concentrate only on the
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Figure 10: The matrix Π−N ′,NKΠ−N ′,N . From left to right: Peclet = 10 (31
downstream and 19 upstream modes); Peclet = 1 (27 downstream and 23
upstream modes); Peclet = 0.1 (25 downstream and 25 upstream modes)

Figure 11: The finite cylinder with length L = 1. From left to right: the value
of T (z) for z = 0, 0.25L, 0.5L, 0.75L,L.

one given by the negative eigenvalues. It is also not clear how to proceed when
Dirichlet and Neumann boundary conditions are mixed at the entrance and the
exit. For instance, extending Graetz modes expansions for semi-infinite ducts
when Ω is parted into two subsets ΩD and ΩN where respectively Dirichlet and
Neumann boundary conditions are imposed is still an open question.

Such problems and extensions are currently under investigation.
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[18] C. Pierre and F. Plouraboué. Numerical analysis of a new mixed-
formulation for eigenvalue convection-diffusion problems. SIAM J. Ap-
plied Maths, 70(3):658–676, 2009.
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