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Abstract

We propose a mathematical analysis of parallel convective exchang-
ers for any general but longitudinally invariant domains. We analyze
general Dirichlet or Neumann prescribed boundary conditions at the
outer solid domain. Our study provides general mathematical expres-
sions for the solution of convection/diffusion problems. Explicit form of
generalized solutions along longitudinal coordinate are found from con-
voluting elementary base Graetz mode with the applied sources at the
boundary. In the case of adiabatic zero flux counter-current configura-
tion we recover the longitudinally linearly varying solution associated
with the zeroth eigenmode which can be considered as the fully devel-
oped behavior for heat-exchangers. We also provide general expression
for the infinite asymptotic behavior of the solutions which depends on
simple parameters such as total convective flux, outer domain perimeter
and the applied boundary conditions. Practical considerations associ-
ated with the numerical precision of truncated mode decomposition is
also analyzed in various configurations for illustrating the versatility of
the formalism. Numerical quantities of interest are investigated, such
as fluid/solid internal and external fluxes.
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Introduction

Applicative context

Heat exchangers are ubiquitous in many industrial processes where heat is to
be to recovered or, on the contrary, disposed, from one fluid onto another.
Applications might be associated with heating or cooling systems, but can
also involve other processes such as pasteurisation, crystallisation, distillation,
concentration or separation of some substances [22, 7, 6]. Similarly mass ex-
changers are also important either in natural biological organs such as kidney
and/or biotechnological applications such as devices for continuous extra cor-
poreal blood purification associated with hemo-dialysis [3], hemo-filtration or
extracorporeal oxygenation.
For both mass or hear exchangers, the exchange takes place from coupled
convection/diffusion processes without any direct contact between the input
and the output fluids, for obvious contamination purposes. Many industrial
examples of such devices are possible to find such as radiators, condensers,
evaporators, air pre-heaters, cooling towers as well as extra corporeal mem-
brane oxygenation and blood micro-filters [1]. Also found in exchangers as
a generic, although not systematic, common feature, is parallel flow design
configuration. This is the class of exchangers that we are going to consider in
this paper, with the hypothesis that there is no longitudinal variation of the
fluid-velocity along the exchanger axis.
In previous contributions a similar Graetz decompositions for solving exchange
configurations has already been used [24, 5, 26, 27]. Graetz decomposition ap-
plied to stationary convective exchanges problems provides elegant and com-
pact solutions. Furthermore, the obtained family of exponentially decaying
modes also permits to set up a hierarchy of modes in fully developed configu-
rations [5]. Nevertheless, there is a number of limitations that have preclude
the systematic and intensive use of such decomposition in more realistic con-
figurations

1. It is much straightforward to used them to convective dominated situa-
tions (where the Péclet number is large) [24, 5]

2. Their used has been restricted to two dimensional [9, 10, 24, 23] or pos-
sibly concentric [23, 5, 27] configurations.

3. They have been used only for constant or piecewise constant prescribed





Analysis of parallel convective exchangers using Graetz modes

Dirichlet lateral temperature profiles [26, 27] or homogeneous Neumann
adiabatic lateral boundary conditions [5].

4. Input/output conditions where generally considered as prescribed uni-
form temperature [24, 5, 26, 27] without considering the possible coupling
with Inlet/Outlet conditions in realistic configurations.

Limitation (1) can be overcome from considering the proper set of orthogonal
modes as first noticed by [12], so that axial diffusion can also be included in
coupled co-current or counter-current problems. Nevertheless, limitation (2)
has only been overcome recently in [16] for longitudinally infinite exchangers
with homogeneous lateral Dirichlet boundary conditions or for finite exchang-
ers [2], again for the homogeneous Dirichlet boundary condition at the outer
solid surface.
In an effort to obtain general formulation to reach realistic applicative configu-
rations, limitations (3) and (4) are still pending. The contribution of this work
is to remove restriction (3). In the following we provide the necessary mathe-
matical theory and numerical implementation to permit the use of generalized
Graetz decomposition for any general lateral boundary conditions. The goal
of a next paper will be to remove restriction (4).
In order to realize that restriction (3) is important in applications, it is inter-
esting to mention that the heat pipes literature has considered a number of
different lateral boundary conditions [21, 13, 14, 23, 8, 25, 27].
As described in [21] one founds, in heat pipes, lateral boundary conditions with
uniform profile (uniform Dirichlet) in transverse and longitudinal directions,
uniform profile along longitudinal direction only, radiative boundary condi-
tions, prescribed uniform flux (uniform Neumann), or exponentially varying
profile along longitudinal direction. It is interesting to mention that exponen-
tially varying lateral boundary conditions in the longitudinal direction permits
to take into account some convection/diffusion coupling between the fluid and
the solid, as described by fully developed Graetz modes which are indeed ex-
ponentially decaying solutions [4, 11].
Hence, each operating conditions thus necessitates a case-specific theoretical
treatment without any generally theoretical framework which could describe
the complete coupling between convection arising inside the fluid coupled with
the diffusion inside the solid.

The purpose of this contribution is to provide such theoretical framework for
any general set of prescribed temperature profile or applied flux around the
exterior solid boundary of the exchanger. This work is an extension of two
previous contributions which have permitted to generalize standard Graetz
eigenmodes decomposition to any, possibly complicated, configuration in the
transverse direction, whilst longitudinally invariant. One considerable advan-
tage of the developed formalism is to provide a two-dimensional formulation
of a fully tri-dimensional problem.
In [16] longitudinally infinite exchangers are considered with homogeneous
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Dirichlet boundary conditions. In a second contribution, the extension of two-
dimensional formulation to finite configurations [2] has also been considered,
again for the homogeneous Dirichlet boundary condition at the outer solid
surface.
In this paper, we generalize previous approaches for the very general case of
any applied Dirichlet or Neumann boundary condition. Of particular interest
is the Neumann case for which, two distinct class of problems emerges from
its mathematical properties, as discussed in [24]. Given the fluid density ρi,
the heat capacity ci and the flux Q̃i of a fluid i, one should distinguish the
case where the total heat capacity flow rate ΣiρiQ̃ici over all fluid i involved in
the exchanger is equal or distinct from zero. It is, for example, distinct from
zero for convective heat pipes for which convection is driving the heat from
inlet to outlet, and in that case, any generalized Graetz mode is exponentially
varying in the longitudinal direction. In the case where the total heat capacity
flow rate ΣiρiQ̃ici = 0 as encountered in balanced counterflow heat exchang-
ers, we show that an additional linearly longitudinally varying mode has to
be considered as already discussed in two-dimensional convection-dominated
configurations [24].

Physical problem and state of the art

This paper considers stationary convection diffusion in a tube, i.e. in a domain
Ω× I with Ω ⊂ R

2 a smooth bounded domain and I ⊂ R an interval (possibly
unbounded). A point M ∈ Ω × I has for coordinates M = (x̃, z̃) with x̃ =
(x̃1, x̃2) ∈ Ω and z̃ ∈ I.
Inside the tube a moving fluid convects a passive tracer, whilst it diffuses inside
the immobile solid part. Two physical assumptions are considered. Firstly the
fluid velocity ṽ in the tube is independent of z and directed along the z-
direction: ṽ(x̃, z̃) = ṽ(x̃)ez. Moreover we adopt the natural convention that
ṽ = 0 in the solid part of the domain Ω. Secondly the thermal conductivity k̃
is assumed to be isotropic and independent of z̃: k̃ = k̃(x̃) ∈ R (anisotropic
conductivity however could be considered with the condition that ez is one
principal direction of the conductivity tensor). In this setting, the stationary
convection-diffusion equation for the temperature T̃ on Ω× I reads

d̃iv(k̃∇̃T̃ ) + k̃∂2z̃ T̃ = ρcṽ∂z̃T̃ , (1)

where d̃iv = divx̃ and ∇̃ = ∇x̃, ρ the fluid density, c the heat capacity, ṽ the
fluid velocity and k̃ the conductivity.

In the following, we discuss a dimensionless form of this convection/diffusion
equation. Following previous conventions in the heat exchanger literature,
considering fluid pipes of radius R, the dimensionless coordinates (x, z) are
defined as x = (x̃1/R, x̃2/R) and z = z̃/R so that the pipe radius is unity.
Furthermore, the conductivity k̃ is non-dimensionalized by the fluid conduc-
tivity k̃f so that k = k̃/k̃f is unity in the fluid. The dimensionless temperature
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T is obtained from considering a reference temperature T0, T = T̃ /T0. The
fluid non-dimensional velocity is defined such that,

v =
Pe

2

ṽ

V
(2)

where V is the average fluid velocity in the fluid pipe, and Pe is the Péclet
number usually considered as

Pe =
ρcV (2R)

kf
=
V (2R)

α
, (3)

where α = kf/ρc is the fluid thermal diffusivity. For notation simplification we
will only consider in the following one fluid type and only one pipe radius R.
This is nevertheless not a restriction of the presented results, which can easily
be generalized to more complex configurations involving tubes of different di-
ameters and different fluids. Note also that we have included the Pe number
in the definition of dimensionless velocity v for notation simplification. Using
dimensionless formulation Equation (1) then reads

div(k∇T ) + k∂2zT = v∂zT, (4)

where similarly div = divx and ∇ = ∇x. The dimensionless velocity v and
conductivity k satisfy mandatorily the two following properties:

v ∈ L∞(Ω) and 0 < km ≤ k(x) ≤ kM , x ∈ Ω, (5)

no additional regularity assumptions on v and k are needed. Problem (4) has
been reformulated in [16], as briefly stated below. On the Hilbert space

H = L2(Ω)× [L2(Ω)]2

we consider the unbounded operator A

A : D(A) ⊂ H 7→ H , D(A) = H1(Ω)× Hdiv(Ω) (6)

∀ (s,q) ∈ D(A) , A(s,q) = (k−1vs− k−1 div q, k∇s).

In matrix notation, the operator A display the form:

A =

[
k−1v −k−1 div

k∇ 0

]

Lemma 1. Let z ∈ I 7→ ψ(z) = (T (z),q(z)) ∈ H be a differentiable function
so that

∀ z ∈ I, ψ(z) ∈ D(A) and
d

dz
ψ(z) = Aψ(z),

then T is a solution of (4) and k∇T = ∂zq.
Here z 7→ T (z) is once differentiable in L2-norm, so ∂2zT only has a weak

(distribution) sense and T is a solution to (4) in the same weak sense.
A strong solution to (4) is recovered if additionally z 7→ q(z) is differentiable
in Hdiv(Ω).
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Lemma 1 is the starting point in [16, 2] to derive solutions to (4) using the
spectral properties of A.

In all the sequel Q will denote the total flow flux across Ω

Q =

∫

Ω

v(x) dx.

The case where no net flux arises, i.e. Q = 0, is singular for the Neumann
case. Note that, given the definition of the dimensionless velocity v in (2)
this condition also reads in dimensional form as a zero total heat capacity
flow rate ΣiρiQ̃ici = 0 for different fluid i flowing in different pipes with flux
Q̃i. Hence, in the following we will considerer the “zero flux” dimensionless
condition Q = 0 without mentioning any more that it corresponds, in fact,
to an adiabatic zero flux countercurrent configuration, as discussed in [24] for
convection dominated regimes.
This case is singular because of the existence of a non trivial element in the
kernel of A denoted Ψ0:

Ψ0 = (1, k∇u0), div(k∇u0) = v and k∇u0 · n = 0 on ∂Ω. (7)

When Q = 0, u0 ∈ H1(Ω) is well defined (up to a constant) since the compati-
bility condition

∫
Ω
div(k∇u0) dx =

∫
∂Ω
k∇u0 ·n dl = 0 =

∫
Ω
v dx. This induces

the existence of a special solution T0 satisfying zero flux condition on ∂Ω,

T0(x, z) = C1(u0(x) + z) + C2,

with C1, C2 ∈ R.

Summary of the paper

This paper is organized in two main parts. In the first part, we present the-
oretical results and derive analytical solutions to problem (4). The second
part provides numerical illustration of the obtained results of the first part
whilst the efficiency of the analytical solutions here derived to describe heat
exchanges in tubes.
In the first theoretical part we start in section 1 with a spectral analysis of
the operator A in (6) either considering a Dirichlet or Neumann type bound-
ary condition on ∂Ω. We provide an extension of the results in [16] dedicated
to the Dirichlet case. This extension in particular shows that in the Neu-
mann case the physics of the problem depends on the value of the total flux
Q =

∫
Ω
vdx. The case Q = 0 is quite singular and moreover of great interest in

our applicative context: it corresponds to counter-current configuration heat
exchanger devices. In all cases our main result in theorem 2 states that A is
diagonal over a (complete) orthogonal basis. The spectrum moreover is made
of a double infinite sequence of eigenvalues going both to +∞ and −∞, each
sequence corresponding either to the upstream (z < 0) or downstream (z > 0)
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region descriptions.
Using these results we derive the solutions to problem (4) for non-homogeneous
boundary conditions of Dirichlet and Neumann type. These solutions are stud-
ied both for an infinite (Ω×R) or a semi infinite (Ω×R

+) domain in sections
2 and 3 respectively. These solutions are obtained as separate variable series:
the variation in the transverse (i.e. Ω) direction is given by the operator A
eigenfunctions and the longitudinal variation is explicitly given by a simple
integral transformation involving both the boundary data (treated as a source
term) and the eigenvalues of A.

Numerical results are given in the last section 4. The analytical solutions
in the two previous sections can be approximated by truncating their series
expansion and by approximating the eigenvalues and eigenfunctions. This ap-
proximation is performed with two-dimensional finite element setting as pre-
sented in section 4.1. A first axi-symmetric test case is presented in section
4.2 whose purpose is to validate the method. Finally the method is developed
to describe the fluid/solid heat exchange for two more complex configurations:
a periodic set of parallel pipes and a counter current heat exchanger.

1 Spectral analysis

The Hilbert space H is equipped with the scalar product: ∀ Ψi = (fi,pi) ∈ H,
i = 1, 2,

(Ψ1|Ψ2)H =

∫

Ω

f1f2k(x) dx+

∫

Ω

p1 · p2k
−1(x) dx,

that is equivalent with the canonical scalar product on H (i.e. taking k=1)
thanks to property (5) on k.
With this definition the operator A satisfies: ∀ Ψi = (si,qi) ∈ D(A), i = 1, 2,

(
AΨ1|Ψ2

)
H
=

(
Ψ1|AΨ2

)
H
+

∫

∂Ω

s1q2 · n dl −

∫

∂Ω

s2q1 · n dl, (8)

with n the unit normal on ∂Ω pointing outwards Ω.

Definition 1. We respectively introduce two restrictions AD and AN of the
operator A relatively to a homogeneous Dirichlet (D) or homogeneous Neu-
mann (N) boundary condition with domains D(AD) and D(AN):

D(AD) = H1
0(Ω)× Hdiv(Ω) , D(AN) = H1(Ω)× H0

div(Ω),

with
H0

div(Ω) = {q ∈ Hdiv(Ω), q · n = 0 on ∂Ω} .

The operators AD and AN clearly have dense domains in H. Using the
property (8) they also are symmetric:

∀ Ψ1,Ψ2 ∈ D(A) : (AΨ1|Ψ2)H = (Ψ1|AΨ2)H ,

either with A = AD or A = AN .
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Theorem 1. The two operators AD and AN in definition 1 are self adjoint.

With theorem 1 We have:

H = ker (AD) ⊥©R (AD) = ker (AN) ⊥©R (AN) ,

we now characterize these spaces.

Corollary 1. In the Dirichlet case

ker (AD) = {(0,q), q ∈ Hdiv(Ω) and div q = 0} ,

R (AD) =
{
(f, k∇s), f ∈ L2(Ω), s ∈ H1

0(Ω)
}
.

In the Neumann case let us consider

KN =
{
(0,q), q ∈ H0

div(Ω) and div q = 0
}
,

RN =
{
(f, k∇s), f ∈ L2(Ω), s ∈ H1(Ω)

}
.

if Q 6= 0: ker (AN) = KN and R (AN) = RN ,
if Q = 0: let us consider Ψ0 defined in (7),

ker (AN) = KN ⊥©span (Ψ0) , RN = R (AN) ⊥©span (Ψ0) .

We always have H = KN ⊥©RN .

In addition to these symmetry properties, the spectrum of the operators
AD and AN can be fully characterized. Let us denote

Sp⋆(A) := Sp(A)− {0},

the spectrum of the operator A without the singleton {0}. Either for A = AD

or A = AN , Sp
⋆(A) displays the same double sequence structure Sp⋆(A) =

(λn)n∈Z⋆ with:

−∞ ←−
n→+∞

λn ≤ · · · ≤ λ1 < 0 < λ−1 ≤ · · · ≤ λ−n −→
n→+∞

+∞. (9)

Negative values of λ ∈ Sp⋆(A) will be referred to as downstream modes whereas
positive values will be referred to as upstream modes.

Theorem 2. The two operators A−1
D : R (AD) 7→ H and A−1

N : R (AN) 7→ H
are compact.
We have Sp⋆(AD) = (λDn )n∈Z⋆ and Sp⋆(AN) = (λNn )n∈Z⋆ , these two sequences
satisfy (9).
Elements of Sp⋆(AD) and of Sp⋆(AN) are eigenvalues of finite order, the associ-
ated eigenvectors (ΨD

n )n∈Z⋆ and (ΨN
n )n∈Z⋆ form a Hilbert basis (with orthogonal

vectors of norm 1) of R (AD) and R (AN) respectively.
We will denote ΨD

n = (TD
n ,q

D
n ) and ΨN

n = (TN
n ,q

N
n ) the eigenfunctions for

the Dirichlet and Neumann cases respectively. We have the relation qD,N
n =

k∇TD,N
n /λD,N

n .
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Two important consequences are (skipping the indexes D and N):

ψ ∈ R (A) iff ‖ψ‖2H =
∑

n∈Z⋆

| (ψ|Ψn)H |
2 < +∞, (10)

ψ ∈ D(A) ∩R (A) iff ‖ψ‖2D(A) :=
∑

n∈Z⋆

|λn (ψ|Ψn)H |
2 < +∞, (11)

and ‖ψ‖D(A) is a norm equivalent to the H1(Ω)× Hdiv(Ω)-norm.

Proof of theorem 1. The Dirichlet case has already been proved in [16]. The
proof in the Neumann case follows the same arguments and is detailed here.

We have AN = A0+V with A0 : (s,q) ∈ D(AN) 7→ (−k−1 div q, k∇s) and
V : (f,p) 7→ (k−1vf, 0). Both AN and A0 are symmetric with dense domains
and V is bounded on H. Using the Kato-Rellich theorem (see e.g. [20] p.
163), the self-adjointness of A0 implies the self-adjointness of AN . To prove
the self-adjointness of A0, let us show that A0 + i has range H (see e.g. [19]).

Let (f,p) ∈ H. Using the Lax Milgram theorem, there exists a unique
q ∈ H0

div(Ω) so that for all χ ∈ H0
div(Ω):

∫

Ω

(q · χ+ div q divχ) k−1 dx =

∫

Ω

(
−ip · χk−1 − f divχ

)
dx. (12)

More precisely the bilinear form on the left is clearly coercive on H0
div(Ω) thanks

to property (5) and the linear form on the right is continuous on H0
div(Ω).

We introduce the function s so that is − k−1 div q = f . Let us prove that
Ψ = (s,q) ∈ D(AN). With div q = k(is− f) we get with (12):

∀ χ ∈ H0
div(Ω), −

∫

Ω

s divχ dx =

∫

Ω

k−1(p− iq) · χ dx,

so that in distribution sense ∇s = k−1(p − iq) ∈ [L2(Ω)]2. It follows that
s ∈ H1(Ω) and therefore Ψ ∈ D(AN). Finally we have is− k−1 div q = f and
k∇s+ iq = p which means that (f,p) = A0Ψ+ iΨ and so R (A0 + i) = H.

Proof of corollary 1. We prove the Neumann case only. If Ψ = (s,q) ∈ D(AN)
satisfies ANΨ = 0 then k∇s = 0 and therefore s is a constant. Now we have
sv − div(q) = 0 with s ∈ R.
In case Q 6= 0, by integrating sv− div(q) = 0 over Ω and using the divergence
formula we get s

∫
Ω
v dx = sQ = 0 and so s = 0. It follows that div q = 0, as

a result ker (AN) = KN in this case.
In case Q = 0, s can be a non zero constant and in this case Ψ ∈ span (Ψ0)
with Ψ0 defined in (7). Thus ker (AN) = KN ⊥©span (Ψ0) in this case.

we clearly have RN ⊂ K⊥
N . Since H = ker (AN)⊥©R (AN), to end the proof

of corollary 1 it suffices to show that H = KN

⊕
RN .

Let (f,p) ∈ H. Let s ∈ H1(Ω) so that,

∀ ϕ ∈ H1(Ω) ,

∫

Ω

k∇s · ∇ϕ dx =

∫

Ω

p · ∇ϕ dx
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The function s ∈ H1(Ω) is defined up to an additive constant by the Lax
Milgram theorem. Let q = p − k∇s: for all ϕ ∈ H1(Ω) we then have

∫
Ω
q ·

∇ϕ dx = 0 and so div q = 0 in distribution sense. Thus q ∈ Hdiv(Ω) and with
the Green formula we get for all ϕ ∈ H1(Ω),

∫
Ω
q · ∇ϕ dx =

∫
∂Ω
ϕq · n dl = 0

and finally q ∈ H0
div(Ω).

We eventually can decompose (f,p) = (f, k∇s)+(0,q) so thatH = KN

⊕
RN

which ends the proof.

Proof of theorem 2. The compactness has already been proved in the Dirichlet
case with additional regularity assumptions on k in [16]. We here give the proof
for k ∈ L∞(Ω) and for the Neumann case only, the proof in the Dirichlet case
is similar and a bit simpler. We simply denote AN = A along this proof.

We consider (fn,pn) ∈ R (A) a bounded sequence in H-norm. We consider
the unique (sn,qn) ∈ D(A) ∩ R (A) so that A(sn,qn) = (fn,pn), one has
to prove that the sequence (sn,qn) is compact. Compacity is in H-norm,
equivalent with the L2-norm.

Let us first prove that the sequence (sn) is compact in L2(Ω)
We firstly have that k∇sn = pn and thus ‖∇sn‖L2 is bounded. The Poincaré
Wirtinger inequality then ensures that ‖sn − cn‖L2 is bounded with cn =∫
Ω
sn dx the mean value of sn. If we prove that (cn) is bounded, we obtain

that ‖sn‖L2 is also bounded and then that (sn) is bounded in H1(Ω): this will
prove that (sn) is compact in L2(Ω) using the Rellich-Kondrachov compactness
theorem.
If Q 6= 0, we have vsn − div(qn) = kfn and integrating over Ω we get that

∫

Ω

v(sn−cn) dx+cn

∫

Ω

v dx−

∫

Ω

div(qn) dx =

∫

Ω

v(sn−cn) dx+cnQ =

∫

Ω

kfn dx,

because qn satisfies a zero flux condition on ∂Ω. Since fn and sn − cn are
bounded in L2-norm, we get that cn is bounded.
IfQ = 0, with corollary 1 we have the additional constraint here that ((sn,qn)|Ψ0)H =
0 =

∫
Ω
ksn dx +

∫
Ω
qn · ∇u0 dx. With vsn − div(qn) = kfn we have

∫
Ω
qn ·

∇u0 dx =
∫
Ω
− div(qn)u0 dx =

∫
Ω
(kfn − vsn)u0 dx. The orthogonality con-

straint then gives
∫
Ω
((k − vu0)sn + kfn) dx = 0 . From this last equality we

get,

cn

∫

Ω

(k − vu0) dx =

∫

Ω

(sn − cn)(vu0 − k) dx−

∫

Ω

ku0fn dx.

The right hand side is bounded. Using that div(k∇u0) = v, the pre-factor
satisfies

∫
Ω
(k − vu0) dx =

∫
Ω
k(1 + ∇u0 · ∇u0) dx and is non zero. It follows

that cn is bounded.

Let us now prove that (qn) is compact in [L2(Ω)]2.
With corollary 1 we firstly have that qn = k∇un with un ∈ H1(Ω). We can
moreover impose that

∫
Ω
un dx = 0. We have that ‖k∇un‖L2 is bounded and

with the Poincaré-Wirtinger inequality it follows that un is bounded in H1(Ω)
thus compact in L2(Ω). We also have that gn := div(k∇un) = vsn − kfn is
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bounded in L2(Ω).
Up to sub-sequence extractions, we then can assume that:

sn −→ s strongly in L2(Ω), un −→ u strongly in L2(Ω),

qn−⇀ q weakly in [L2(Ω)]2, gn−⇀ g weakly in L2(Ω).

We have to prove that indeed qn −→ q strongly in [L2(Ω)]2.
Let us first prove that u ∈ H1(Ω) with k∇u = q and that q ∈ H0

div(Ω) with
div q = g.
For all test function χ ∈ [C∞

c (Ω)]2,

∫

Ω

k−1q · χ dx = lim
n

∫

Ω

k−1qn · χ dx = lim
n

∫

Ω

∇un · χ dx = − lim
n

∫

Ω

un divχ dx

= −

∫

Ω

u divχ dx,

in the distribution sense, this means that ∇u = k−1q ∈ L2(Ω) i.e. u ∈ H1(Ω)
and k∇u = q.
Now for all ϕ ∈ H1(Ω), since qn ∈ H0

div(Ω), we have

∫

Ω

ϕg dx = lim
n

∫

Ω

ϕgn dx = lim
n

∫

Ω

ϕ div qn dx = − lim
n

∫

Ω

∇ϕ · qn dx = −

∫

Ω

∇ϕ · q dx.

This first ensures that div q = g ∈ L2(Ω) in the sense of distributions, so that
q ∈ Hdiv(Ω). Now that we nave q ∈ Hdiv(Ω), using the Green formula we
moreover have for all ϕ ∈ H1(Ω):

∫

Ω

ϕg dx = −

∫

Ω

∇ϕ · q dx =

∫

Ω

ϕ div q dx−

∫

∂Ω

ϕq · n dl =

∫

Ω

ϕg dx−

∫

∂Ω

ϕq · n dl..

The boundary integral is always equal to zero and thus q ∈ H0

div(Ω).
Finally, we now can conclude than ‖qn − q‖L2 → 0:

‖qn−q‖
2
L2 =

∫

Ω

kk−1(qn−q)·(qn−q) dx ≤ kM

∫

Ω

k−1(k∇un−k∇u)·(qn−q) dx,

using inequality (5). With the Green formula it follows that,

‖qn − q‖2L2 ≤ kM

∫

Ω

∇(un − u) · (qn − q) dx = −kM

∫

Ω

(un − u)(gn − g) dx

≤ kM‖un − u‖L2‖gn − g‖L2 , ,

with the Cauchy-Schwartz inequality. We conclude to ‖qn−q‖L2 → 0 because
‖un − u‖L2 → 0 and ‖gn − g‖L2 is bounded.

We proved that A−1 : R (A) → R (A) is compact. It is moreover self ad-
joint by theorem 1 and injective by construction. By Hilbert Schmidt theorem
there exists an orthogonal Hilbert basis of R (A) made of eigenvectors of A−1,
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moreover 0 is the only limit points of the associated sequence of (non-zero)
eigenvalues.

This proves the remaining part of theorem 2 excepted the particular struc-
ture (9) displayed by the eigenvalues. To prove this we have to show that
the Rayleigh coefficients (ψ,Aψ) are bounded neither above nor below for
ψ ∈ D(A) and ‖ψ‖H = 1, we already know that they are unbounded. We have
with ψ = (s,q),

(ψ,Aψ) =

∫

Ω

vs2 dx+ 2

∫

Ω

q · ∇s dx.

The first term on the right is clearly bounded, then the second one is un-
bounded and moreover changes of sigh when performing the transformation
(s,q)→ (−s,q). This second term then is unbounded above and below.

2 Solutions on infinite domains

We here consider the case I = R. Being given a function f : R 7→ R, we look
for a solution T to (4) on Ω× R for the two following problems.

Dirichlet problem: T (x, z) = f(z) for x ∈ ∂Ω, (13)

Neumann problem: k∇T (x, z) · n = f(z) for x ∈ ∂Ω. (14)

We firstly draw the basic ideas to derive solutions to these two problems.
Rigorous statements of the solutions are given in the following sub-sections,
they follow from these preliminary formal results given below.

With lemma 1, we search for a solution ψ(z) = (T (z),q(z)) to
dψ

dz
= Aψ under

the form,

ψ(z) =
∑

n∈Z⋆

dn(z)Ψ
D
n or ψ(z) =

∑

n∈Z⋆

dn(z)Ψ
N
n ,

for the Dirichlet or Neumann cases respectively.
Formally differentiating the sums we get,

d

dz
ψ(z) =

∑

n∈Z⋆

d′n(z)Ψ
D
n or

d

dz
ψ(z) =

∑

n∈Z⋆

d′n(z)Ψ
N
n ,

so that d′n =
(
Aψ|ΨD

n

)
H
or d′n =

(
Aψ|ΨN

n

)
H
respectively. Using (8) we obtain,

d′n = λDn dn +

∫

∂Ω

T (z)qD
n · n dl or d′n = λNn dn −

∫

∂Ω

q(z) · nTN
n dl.

For the Dirichlet problem T (z) = f(z) on ∂Ω. For the Neumann problem we
have k∇T = ∂zq so that q(z) · n = F (z) with F a primitive of f on ∂Ω.
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Let us introduce the coefficients αn given either for the Dirichlet or the Neu-
mann problems by:

αD
n = −

1

λDn

∫

∂Ω

qD
n · n dl, αN

n =
1

λNn

∫

∂Ω

TN
n dl. (15)

Finally the functions dn satisfy,

d′n = λDn dn − λ
D
n α

D
n f(z) or d′n = λNn dn − λ

N
n α

N
n F (z),

respectively for the Dirichlet or Neumann cases. In the sequel the function dn
are sought under the form,

dn(z) = αD
n f(z) + αD

n cn(z) or dn(z) = αN
n F (z) + αN

n cn(z),

thus with the function cn solution of,

c′n = λDn cn − f
′ or c′n = λNn cn − f,

respectively for the Dirichlet or Neumann cases. In the Dirichlet case, the
solution Ψ is then sought under the form,

Ψ(z) = f(z)
∑

n∈Z⋆

αD
n Ψ

D
n +

∑

n∈Z⋆

αD
n cn(z)Ψ

D
n ,

whereas in the Neumann case it reads,

Ψ(z) = F (z)
∑

n∈Z⋆

αN
n Ψ

N
n +

∑

n∈Z⋆

αN
n cn(z)Ψ

N
n .

Let us first characterize the functions
∑

n∈Z⋆ αD
n Ψ

D
n and

∑
n∈Z⋆ αN

n Ψ
N
n .

2.1 The coefficients αn

Lemma 2. The coefficients αn defined in (15) satisfy:
∑

n∈Z⋆

αD
n Ψ

D
n = ϕD,

∑

n∈Z⋆

αN
n Ψ

N
n = ϕN , (16)

with ϕD ∈ R (AD) ∩D(A) uniquely determined by,

ϕD = (1, k∇uD), uD ∈ H1
0(Ω) and AϕD = 0, (17)

and with ϕN ∈ R (AN) ∩D(A) uniquely defined by,

ϕN = (sN , k∇uN ), k∇uN · n = 1 on ∂Ω (18)

and AϕN =

{
0 if Q 6= 0
aΨ0 if Q = 0, a ∈ R

,

for Ψ0 defined in (7). In the particular case Q = 0, the constraint ϕN ∈ R (AN)
implies that

(
ϕN |Ψ0

)
H
= 0.

The Bessel inequality (10) ensures that
∑

n∈Z⋆ |αD
n |

2 < +∞ and
∑

n∈Z⋆ |αN
n |

2 <
+∞. Meanwhile, ϕD /∈ D(AD) and ϕ

N /∈ D(AN), we also have with relation
(11)

∑
n∈Z⋆ |λDn α

D
n |

2 = +∞ and
∑

n∈Z⋆ |λNn α
N
n |

2 = +∞.
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Remark 1. Let us precise the definition of the particular functions ϕD and
ϕN .

• For the Dirichlet case ϕD = (1, k∇uD), the function uD is determined by
the equation div(k∇uD) = v and uD = 0 on the boundary ∂Ω.

• For the Neumann case when Q 6= 0, ϕN = (sN , k∇uN) and sN is a con-
stant, equal to P/Q with P the perimeter of Ω. The second component
is defined by Q div(k∇uN) = Pv and k∇uN · n = 1 on ∂Ω. This equa-
tion is well posed as long as Q 6= 0 and uN is defined up to an additive
constant. In the sequel we will fix this constant by imposing that:

Q

∫

Ω

vuN dx = P

∫

Ω

k dx. (19)

• For the Neumann case when Q = 0, let us consider the two constants a,
b ∈ R:

a

∫

Ω

(vu0 − k) dx = P, (20)

b

∫

Ω

(vu0 − k) dx = a

∫

Ω

u0(2k − vu0) dx+

∫

∂Ω

u0 dl, (21)

with P the perimeter of the domain Ω and u0 defined in (7). In this case
the function ϕN = (sN , k∇uN) satisfies sN = au0 + b.
The function uN satisfies the elliptic equation v

(
auo+ b

)
−div(k∇uN) =

ak together with the boundary condition k∇uN · n = 1 on ∂Ω.
The justification of the well posedness of a, b and uN is detailed in the
following proof.

Proof. We first prove that there exists a unique ϕD ∈ R (AD)∩D(A) satisfying
(17). The condition AϕD = 0 imposes div(k∇uD) = v which equation has a
unique solution uD ∈ H1

0(Ω) .
We now prove that there exists a unique ϕN ∈ R (AN) ∩ D(A) satisfying

(18).
Let first Q 6= 0. The condition AϕN = 0 imposes sN ∈ R and div(k∇uN) =
sNv. With k∇uN · n = 1 on ∂Ω the compatibility condition has the form∫
Ω
dl = P = sNQ and sets the constant sN = P/Q. The equationQ div(k∇uN) =

Pv with boundary condition k∇uN ·n = 1 on ∂Ω is well posed and defines uN

up to an additive constant.
Let now Q = 0. The condition AϕN = aΨ0 first imposes that k∇sN = ak∇u0
and so sN = au0 + b with b ∈ R. It secondly imposes the equation,

v
(
auo + b

)
− div(k∇uN) = ak.

With k∇uN · n = 1 on ∂Ω the compatibility condition for this equation is
independent on b and reads:

∫

Ω

(avuo + bv − div(k∇uN) dx = a

∫

Ω

vu0 dx− P = a

∫

Ω

k dx.
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This relation uniquely determines the value of a as stated in (20): note that a
is well defined since

∫
Ω
(vu0 − k) dx =

∫
Ω
(div(k∇u0)u0 − k) dx = −

∫
Ω
(k∇u0 ·

∇u0 + k) dx 6= 0.
Setting a to this value characterizes (for any given value of b) the function
uN up to an additive constant. We got ϕN = (au0 + b, k∇uN ) ∈ D(A) ∩ RN

satisfying AϕN = aΨ0. We still have to fulfill the constraint ϕN ∈ R (AN), in
the present case Q = 0 (see corollary 1) we only have to impose

(
ϕN |Ψ0

)
H
= 0:

(
ϕN |Ψ0

)
H
=

∫

Ω

k(au0 + b) dx+

∫

Ω

k∇uN · ∇u0 dx

=

∫

Ω

k(au0 + b) dx−

∫

Ω

div(k∇uN)u0 dx+

∫

∂Ω

u0 dl

=

∫

Ω

k(au0 + b) dx+

∫

Ω

(
ka− (au0 + b)v

)
u0 dx+

∫

∂Ω

u0 dl

= b

∫

Ω

(k − vu0) dx+ a

∫

Ω

u0(2k − vu0) dx+

∫

∂Ω

u0 dl = 0

This sets the value of b to (21).

With ϕD and ϕN so defined, let us prove (16). For this, since ϕD ∈ R (AD)
and ϕN ∈ R (AN), it suffices to prove that

(
ϕD|ΨD

n

)
H
= αN

n and
(
ϕN |ΨD

n

)
H
=

αN
n . We do it in the Neumann case only. Using property (8) we get,

λNn
(
ϕN |ΨN

n

)
H
=

(
ϕN |AΨN

n

)
H
=

(
AϕN |ΨN

n

)
H
+

∫

∂Ω

TN
n k∇u

N · n dl.

We always have
(
AϕN |ΨN

n

)
H

= 0: either AϕN = 0 if Q 6= 0 or AϕN =

aΨ0 ∈ R (AN)
⊥ if Q = 0. With k∇uN · n = 1 on ∂Ω we obtain the result:(

ϕN |ΨN
n

)
H
=

∫
∂Ω
TN
n dl/λNn = αN

n .

2.2 The Dirichlet problem

We simply denote here λn = λDn , Ψn = ΨD
n and αn = αD

n . We introduce the
functions cn(z) for n ∈ Z

⋆,

c−n(z) =

∫ +∞

z

f ′(ξ)eλ−n(z−ξ) dξ, c+n(z) = −

∫ z

−∞

f ′(ξ)eλ+n(z−ξ) dξ. (22)

for −n < 0 and +n > 0 respectively.
If we assume that f ′ is bounded, these functions are well defined (because
λn < 0 for n > 0 and vice versa), they also are bounded, differentiable and
verify c′n = λncn − f

′.

Proposition 1. We assume that f ∈ C1(R) with f ′ bounded and we consider
the mapping z ∈ R 7→ ψ(z) = (T (z),q(z)) ∈ R (AD),

ψ(z) = f(z)ϕD +
∑

n∈Z⋆

αncn(z)Ψn, (23)
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We have,

ψ ∈ C1(R,H) ∩ C0(R, D(A)),
d

dz
ψ = Aψ on R, (24)

and T is the solution to the Dirichlet problem (4) (13). The regularity estimate
above simply means that z 7→ T (z) is C1 in L2(Ω) and continuous in H1(Ω):
T is a weak solution to equation (4), as stated in lemma 1.
If we moreover assume that f ∈ C2(R) with f ′′ bounded we get the additional
regularity,

ψ ∈ C2(R,H) ∩ C1(R, D(A)). (25)

This means that z 7→ T (z) is C2 in L2(Ω), C1 in H1(Ω) and that z 7→ k∇T (z) is
continuous in Hdiv(Ω). With this assumption T is a strong solution to equation
(4), as stated in lemma, 1.

The definition of the temperature T (z) associated to ψ in (23) can be
precise thanks to remark 1. We have,

T (z, x) = f(z) +
∑

n∈Z⋆

αncn(z)Tn(x).

Moreover far-field estimates on the temperature can be derived from this ex-
pression under suitable assumptions on f . Roughly speaking, if f(z)→ f(+∞)
as z → +∞ then we also have T (z) → f(+∞). If we instead have a linear
growth of f at +∞, then T (z) verifies a similar asymptote. This is detailed in
the following corollary.

Corollary 2. We assume f ∈ C1(R) with f ′ bounded. If
∫ +∞

0
|f ′|dz < +∞,

then f has a limit in +∞ and:

T (z) −→
z→+∞

f(+∞) in L2(Ω).

We moreover assume f ∈ C2(R) with f ′′ bounded. If
∫ +∞

0
|f ′′|dz < +∞, then

f ′ has a limit in +∞ and:

∂zT (z) −→
z→+∞

f ′(+∞), T (z) ˜
z→+∞

f(z) + f ′(+∞)uD in L2(Ω),

with uD defined in remark 1: div(k∇uD) = v and uD ∈ H1
0(Ω).

The regularity assumption on f can be weakened. In particular jumps of
f can be taken into account. We still can derive solutions when f ′ = g + δ
with g continuous and bounded and δ a Dirac-type distribution. The functions
cn(z) in (22) can be defined in this framework as well as the mapping ψ in
(23). With such a boundary data ψ remains continuous in H but is only
differentiable outside the support of δ. These properties are detailed in the
corollary 3
Similarly jumps on f ′ can be taken into account. Taking now f ′′ = g + δ as
previously, then T (z) remains C2 in L2(Ω), C1 in H1(Ω) and k∇T (z) remains
C0 in Hdiv(Ω) outside the support of δ. These properties are detailed in the
corollary 5.
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Corollary 3. Assume that f(z) = ω(z) with ω(z) = 1 if z < 0 and ω(z) = 0
otherwise, so that f ′ = −δ0. The computation of the functions cn(z) in (22)
leads to the following definition of ψ(z) = (T (z),q(z)):

ψ(z) = ω(z)ϕD − ω(z)
∑

n<0

αne
λnzΨn + (1− ω(z))

∑

n>0

αne
λnzΨn. (26)

We have,

ψ ∈ C0(R,H) ∩ C∞(R⋆, D(A)) and
d

dz
ψ = Aψ on R

⋆,

and T is the solution to the Dirichlet problem (4) (13) with f = ω.
It has the following regularity: z 7→ T (z) is C∞ on R

⋆ in H1(Ω) and z 7→
k∇T (z) is C∞ on R

⋆ in Hdiv(Ω). It then is a strong solution on R
⋆.

At the origin z = 0, T is continuous in L2(Ω).

Proof of proposition 1. Let us first prove the regularity estimates for ψ in equa-
tion (23). The regularity for z 7→ f(z)ϕD is clear. From (10) (11), it suffices
to prove that the two series

∑
n∈Z⋆ |λnαncn(z)|

2 and
∑

n∈Z⋆ |αnc
′
n(z)|

2 are uni-
formly converging. We already have from lemma 2 that

∑
n∈Z⋆ |αn|

2 < +∞.
The uniform convergence then follows from the upper bounds |λncn(z)| ≤
‖f ′‖L∞ and |c′n| = |λncn − f

′| ≤ 2‖f ′‖L∞ .
The boundary condition (13) follows from ψ(z)−f(z)ϕD =

∑
n∈Z⋆ αncn(z)Ψn ∈

D(AD) = H1
0(Ω) × Hdiv(Ω). This implies T (z) − f(z) ∈ H1

0(Ω) by definition
(17) of ϕD and therefore T|∂Ω = f(z).

Let us now prove that dψ/dz = Aψ. On one hand, since AϕD = 0 we have

Aψ = A
( ∑

n∈Z⋆

αncn(z)Ψn

)
=

∑

n∈Z⋆

λnαncn(z)Ψn.

On the other hand,

d

dz
ψ = f ′(z)ϕD +

∑

n∈Z⋆

αnc
′
n(z)Ψn = f ′(z)ϕD +

∑

n∈Z⋆

αn(−f
′(z) + λncn(z))Ψn

= f ′(z)
(
ϕD −

∑

n∈Z⋆

αnΨn

)
+ Aψ.

This gives dψ/dz = Aψ with (16).
Now assume that f ∈ C2(R) with f ′′ bounded. By integrating by part we

get for n < 0:

cn(z) =
1

λn
f ′(z) +

1

λn

∫ +∞

z

f ′′(ξ)eλn(z−ξ) dξ.

With c′n = λncn − f
′ we get,

c′n(z) =

∫ +∞

z

f ′′(ξ)eλn(z−ξ) dξ.
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It follows that |λnc
′
n(z)| ≤ ‖f

′′‖L∞ . Since c′′n = λnc
′
n − f ′′ we also get the

second upper bound |c′′n(z)| ≤ 2‖f ′′‖L∞ .
We have the same upper bounds for n > 0, they imply that the two se-
ries

∑
n∈Z⋆ |λnαnc

′
n(z)|

2 and
∑

n∈Z⋆ |αnc
′′
n(z)|

2 are uniformly converging. With

(10) (11), this respectively ensures that z 7→
∑

n∈Z⋆ αncn(z)Ψn is C1 in D(A)
and C2 in H.

Proof of corollary 2. We assume that
∫ +∞

0
|f ′|dz < +∞. It implies that ε(z) =

sup[z,+∞) |f
′| → 0 as z → +∞ .

Let us prove that the cn(z) uniformly converges towards 0 as z → +∞. With∑
n∈Z⋆ |αn|

2 < +∞ this will ensure that,

∑

n∈Z⋆

αncn(z)Ψn −→
z→+∞

0 in H,

which implies that T (z)→ f(+∞) in L2(Ω).
First for n < 0 (and so λn > 0), we have:

|cn(z)| ≤ eλnz

∫ +∞

z

|f ′(ξ)|e−λnξ dξ ≤ ε(z)eλnz

[
e−λnξ

−λn

]+∞

z

= ε(z)/λn,

that implies uniform convergence to 0 for n < 0.
Now for n > 0 (and so λn < 0), we have for any z0 < z:

|cn(z)| ≤ eλnz

∫ z0

−∞

|f ′(ξ)|e−λnξ dξ + eλnz

∫ z

z0

|f ′(ξ)|e−λnξ dξ.

The second integral is easy to bound: since −λn > 0, we have 0 < e−λnξ <
e−λnz on [z0, z] and so:

eλnz

∫ z

z0

|f ′(ξ)|e−λnξ dξ ≤

∫ z

z0

|f ′(ξ)| dξ ≤

∫ +∞

z0

|f ′(ξ)| dξ.

We now bound the first integral,

eλnz

∫ z0

−∞

|f ′(ξ)|e−λnξ dξ ≤ ‖f ′‖∞e
λnz

[
e−λnξ

−λn

]z0

−∞

= ‖f ′‖∞
eλn(z−z0)

|λn|
≤ ‖f ′‖∞

eλ1(z−z0)

|λ1|
,

using λn < λ1 < 0 for n > 0 and z − z0 > 0. For a given ε > 0, we can find
z0 so that

∫ +∞

z0
|f ′(ξ)| dξ < ε and we can find z1 > z0 so that for all z > z1 we

have ‖f ′‖∞e
λ1(z−z0)/|λ1| < ε. It follows that |cn(z)| < 2ε for all z > z1 and all

n > 0.
In case f ∈ C2(R) with f ′′ bounded, it has been proved in the proof for

proposition 1 that,

c′n(z) =

∫ +∞

z

f ′′(ξ)eλn(z−ξ) dξ, c′n(z) = −

∫ z

−∞

f ′′(ξ)eλn(z−ξ) dξ,
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respectively for n < 0 and n > 0. Thus the same arguments as in the previous
case prove that, ∑

n∈Z⋆

αnc
′
n(z)Ψn −→

z→+∞
0 in H,

so that ∂zT → f ′(+∞) as z → +∞.
Now we have cn = c′n/λn + f ′/λn:

∑

n∈Z⋆

αncn(z)Ψn =
∑

n∈Z⋆

αn

c′n(z)

λn
Ψn + f ′(z)

∑

n∈Z⋆

αn

λn
Ψn.

The first sum converges to zero as z → +∞. The second one towards f ′(+∞)A−1
D ϕD,

with A−1
D ϕD =

∑
n∈Z⋆ αnΨn/λn by definition. Let us characterize A−1

D ϕD. We

search for (s,q) ∈ D(AD) so that A(s,q) = ϕD, it satisfies s ∈ H1
0(Ω) and

k∇s = k∇uD so that s = uD. Finally we showed that
∑

n∈Z⋆ αncn(z)Tn →
f ′(+∞)uD as z → +∞ which ends the proof.

Proof of corollary 3. The regularity of ψ in equation (26) follows from the
observation that, since λn → +∞ as n → −∞ and since

∑
n∈Z⋆ |αn|

2 < +∞,
then the series

∑
n<0 |λ

k
nαne

λnz|2 is uniformly converging for z ∈ (−∞,−ε) for
all ε > 0 and all k ∈ N. As a result with (11), z ∈ (−∞, 0) 7→

∑
n<0 αne

λnzΨn

is infinitely differentiable in D(AD). The same result holds for z ∈ (0,+∞) 7→∑
n>0 αne

λnzΨn.
The continuity of ψ at the origin in H-norm follows from (16).
The proof that dψ/dz = Aψ on R

⋆ and that T = w on ∂Ω is identical with
the proof of proposition 1.

2.3 The Neumann problem for Q 6= 0

We simply denote here λn = λNn , Ψn = ΨN
n and αn = αN

n . The functions cn(z)
for n ∈ Z

⋆ are alternatively defined as,

c−n(z) =

∫ +∞

z

f(ξ)eλ−n(z−ξ) dξ, c+n(z) = −

∫ z

−∞

f(ξ)eλ+n(z−ξ) dξ, (27)

for −n < 0 and +n > 0 respectively.

For f bounded they are well defined, bounded. differentiable and verify
c′n = λncn − f .

Proposition 2. We assume that f ∈ C1(R) and that both f and f ′ are
bounded. We introduce F a primitive of f .
Let us consider the mapping z ∈ R 7→ ψ(z) ∈ R (AN),

ψ(z) = F (z)ϕN +
∑

n∈Z⋆

αncn(z)Ψn, (28)
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we have

ψ ∈ C2(R,H) ∩ C1(R, D(A)) and
d

dz
ψ = Aψ on R,

and T is a strong solution to the Neumann problem (4) (14).

The regularity of the solution to the Neumann problem is increased of one
degree comparatively to the Dirichlet case. This comes from the definition
of the function cn that are defined with respect to f (equation (27)) in the
Neumann case whereas they are defined with the help of f ′ (equation (22)) for
the Dirichlet problem.
Another interesting difference with the Dirichlet case is that the temperature
now is defined up to an additive constant and we have an infinite set of solutions
T . Precisely with remark 1, the temperature T can be written as:

T (z, x) =
P

Q
F (z) +

∑

n∈Z⋆

αncn(z)Tn(x), (29)

where F is defined up to an additive constant. This was expected since any
constant C is solution to (4) with homogeneous Neumann boundary condition
on R× ∂Ω. We however have uniqueness for the gradient of T that describes
the heat exchanges. To have a unique determination of the temperature, the
constant in F has to be set. This means adding some normalization condition
on the temperature (indeed in the Dirichlet case this normalization also is
present but implicitly). Such a normalization can be done considering the far
field temperature with suitable conditions on f (roughly f → 0 at one end of
the duct at least). This is precised in the following corollary

Corollary 4. We assume as in proposition 2 that f ∈ C1(R) and that both f
and f ′ are bounded.
If
∫ +∞

0
|f |dz < +∞, then F has a limit in +∞ and:

T (z) −→
z→+∞

F (+∞)
P

Q
in H.

The constant F (+∞) then can be fixed by a condition on T at z = +∞.
If
∫ +∞

0
|f ′|dz < +∞, then f has a limit in +∞ and:

∂zT (z) −→
z→+∞

f(+∞)
P

Q
, T (z) ˜

z→+∞
F (z) + f(+∞)uN in L2(Ω),

with uN defined in remark 1: Q div(k∇uN) = Pv and k∇uN · n = 1 on ∂Ω
with the normalization condition (19).
Similar results could of course also be obtained with asymptotic assumptions
on f at z = −∞.
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Solution can also be obtained with weaker regularity on the boundary data
f : precisely with f ′ = g+δ with g continuous and bounded and with δ a Dirac-
type distribution. The functions cn(z) in (27) can be defined in this framework
as well as the function ψ in (28). With such a boundary data ψ remains C1 in
H on R but is only C2 in H and C1 in D(A) outside the support of δ. These
properties are detailed in the corollary 5. Transposed to the Dirichlet context
this corresponds to the case f ′′ = g + δ.

Corollary 5. Assume that f(z) = ω(z) with ω(z) = 1 if z < 0 and ω(z) = 0
otherwise, so that f ′ = −δ0. The computation of the functions cn(z) in (27)
in this case leads to the following definition of ψ(z) = (T (z),q(z)):

ψ(z) =

{
A−1

N ϕN + zϕN −
∑

n<0 αne
λnzΨn/λn if z < 0

∑
n>0 αne

λnzΨn/λn if z > 0
, (30)

where A−1
N ϕN =

∑
n∈Z⋆ αnΨn/λn is well defined since ϕN ∈ R (AN).

We have,
ψ ∈ C1(R,H) ∩ C0(R, D(A)) ∩ C∞(R⋆, D(A)),

and T is a solution to the Neumann problem (4) (14) with f = ω.
The regularity result above means: z 7→ T (z) is C∞ on R

⋆ in H1(Ω) and
z 7→ k∇T (z) is C∞ on R

⋆ in Hdiv-norm. At the origin z = 0, T is C1 in L2(Ω)
and k∇T is continuous in L2(Ω).

Proof of proposition 2. Let ψ be given by equation (28). The function F in
this section plays a symmetric role with f in the previous section (Dirichlet
case). Here F ∈ C2(R) with F ′ and F ′′ bounded: with proposition 1, relations
(24) and (25) hold for ψ. It only remains to prove that T satisfies (14)
We have ∂zψ = f(z)ϕN +

∑
n∈Z⋆ αnc

′
n(z)Ψn. In the proof of proposition 1 we

showed that |λnc
′
n(z)| ≤ ‖F

′′‖L∞ , consequently
∑

n∈Z⋆ αnc
′
n(z)Ψn ∈ D(AN).

It follows that on ∂Ω we have ∂zq ·n = f(z)k∇uN ·n = f(z) using (18). With
∂zq = k∇T we obtain the desired boundary condition (14).

Proof of corollary 4. Replacing f by F in the proof of corollary 2 gives that:

• if
∫ +∞

0
|f |dz < +∞ then

∑
n∈Z⋆ αncn(z)Ψn → 0 as z → +∞,

• if
∫ +∞

0
|f ′|dz < +∞ then

∑
n∈Z⋆ αnc

′
n(z)Ψn → 0 and

∑
n∈Z⋆ αncn(z)Ψn →

f(+∞)A−1
N ϕN as z → +∞.

It remains to characterize (s,q) = A−1
N ϕN . We use the determination of ϕN

in remark 1: k∇s = k∇uN so that s = uN + C with C a constant. We now
have v(uN + C) − div(q) = kP/Q. Integrating over Ω and since q ∈ H0

div(Ω)
we get:

Q

∫

Ω

v(uN + C) dx = P

∫

Ω

k dx,

so that with the chosen normalization (19) C = 0.
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Proof of corollary 5. Since F ′ = ω ∈ L∞(R) we can apply the first part of
proposition 1 so that (24) holds for ψ in equation (30). The regularity estimates
on R

⋆ are identical to the ones n the Dirichlet case.
Let us examine the boundary condition.

d

dz
ψ =

{
ϕN −

∑
n<0 αne

λnzΨn if z < 0
∑

n>0 αne
λnzΨn if z > 0

.

We clearly have dψ/dz − ω(z)ϕN ∈ D(AN) for z 6= 0. As a result on the
boundary ∂Ω, k∇T · n = ∂zq · n = ω(z)k∇uN · n = ω(z) with (18).

2.4 The Neumann problem for Q = 0

Let us adapt the previous results to the particular case Q = 0: notations are
unchanged as for the Neumann problem with Q 6= 0.
We recall that the definition of ϕN = (sN , k∇uN) =

∑
n∈Z⋆ αnΨn is singular

in this case. As stated in lemma 2 and in remark 1, sN = au0+ b with a and b
two constants given in (20) (21) and u0 defined in (7). We have ϕN ∈ R (AN),
so that

(
ϕN |Ψ0

)
H
= 0, and AϕN = aΨ0. We also recall that Ψ0 = (1, k∇u0)

and the definition of R (AN) in corollary 1: RN = R (AN)⊥©span (Ψ0).

Proposition 3. The results of proposition 2 extends to the case Q = 0 with
the alternative definition of ψ : z ∈ R 7→ RN :

ψ(z) = aG(z)Ψ0 + F (z)ϕN +
∑

n∈Z⋆

αncn(z)Ψn,

with G : R 7→ R satisfying G′ = F .

The case Q = 0 present singular characteristics that deserves our attention.
The temperature reads:

T (z) = aG(z) + F (z)(au0 + b) +
∑

n∈Z⋆

αncn(z)Tn.

When compared to (29) we see that the leading term as z → ±∞ in the
temperature are different: if Q 6= 0 it is F (z)P/Q whereas when Q = 0 it is
aG(z). Assume for example that f = 0 in a neighborhood of +∞: in this case
T (z) will converge to some limit if Q 6= 0 whereas for Q = 0 it will present a
linear growth. Similarly if f = L 6= 0 in a neighborhood of +∞: in this case
T (z) will present a linear growth if Q 6= 0 whereas for Q = 0 this growth will
instead be parabolic. These two properties being consequences of corollary 4.

A second important difference is that the solution now is defined up to two
constants, which was expected since any function of the form C1(z + u0) +C2

is solution of the homogeneous Neumann problem. Thus two solutions of the
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problem may have different gradient and then correspond to different heat
exchanges. To clarify this we rewrite the temperature as,

T (z) =C1(z + u0) + C2 + aG(z) + F (z)(au0 + b) +
∑

n∈Z⋆

αncn(z)Tn, (31)

∂zT (z) =C1 + aF (z) + f(z)(au0 + b) +
∑

n∈Z⋆

αnc
′
n(z)Tn.

imposing F (0) = G(0) = 0 and with C1, C2 two constants.
Assume that f(+∞) = 0 and

∫ +∞

0
|f ′|dz < +∞: physically we could say f = 0

at one end of the duct. As showed in the proof of corollary 4, it implies that∑
n∈Z⋆ αnc

′
n(z)Ψn → 0 as z → +∞. Here F (+∞) =

∫ +∞

0
fdz and we get the

following limit,

∂zT (z) −→
z→+∞

C1 + a

∫ +∞

0

fdz.

This is another important difference with the case Q 6= 0 where this limit
would be fixed here, equal to f(+∞)P/Q. In the case Q 6= 0 this limit is
free. We can impose the heat flux at +∞ : such an additional condition
determines C1. With this supplementary condition, we conserve an infinite set
of solutions depending on C2: but two such solutions have equal gradients and
now correspond to equal heat exchanges.

Proof of proposition 3. All the regularity estimates will still hold in this case:
they only depend on the cn(z) whose definition remained unchanged. The
boundary condition (14) will also be satisfied since Ψ0 = (1, k∇u0) and u0
satisfies a zero flux condition on ∂Ω.

We then only have to prove that ∂zψ = Aψ. On one hand, since AϕN = aΨ0

and AΨ0 = 0 we have

Aψ = aF (z)Ψ0 +
∑

n∈Z⋆

λnαncn(z)Ψn.

On the other hand,

d

dz
ψ = aF (z)Ψ0 + f(z)ϕN +

∑

n∈Z⋆

αnc
′
n(z)Ψn

= aF (z)Ψ0 + f(z)ϕN +
∑

n∈Z⋆

αn(−f(z) + λncn(z))Ψn

= f(z)
(
ϕN −

∑

n∈Z⋆

αnΨn

)
+ Aψ.

This gives dψ/dz = Aψ with (16).

3 Solutions on semi-infinite domains

We here consider the case I = R
+ = (0,+∞). Being given a function

f : R
+ 7→ R, we look for a solution T either to the Dirichlet problem (4) (13)
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or to the Neumann problem (4) (14) on ∂Ω × R
+. These two problems need

an additional entry condition on Ω×{0} to be closed. The theoretical and nu-
merical background to deal with Dirichlet entry condition has been developed
in [2], they will be used and briefly discussed in the next numerical section
4. A second methodology has been developed in [15] in order to deal with
quite general entry condition: a mixed combination of Dirichlet, Neumann
and Robin type, moreover allowing the coupling with additional tubes. Since
the focus in this paper is on the lateral boundary conditions, entry condition
will not be precised in this section.

3.1 The Dirichlet problem

We again simply denote λn = λDn , Ψn = ΨD
n and αn = αD

n . We assume that f
is differentiable and that f ′ is bounded.
The functions cn(z) now are defined for n ∈ Z

⋆ by,

cn(z) =

∫ +∞

z

f ′(ξ)eλn(z−ξ) dξ if n < 0, cn(z) = −

∫ z

0

f ′(ξ)eλn(z−ξ) dξ if n > 0.

They are well defined, bounded, differentiable and satisfy c′n = λncn−f
′. These

functions only differs from the ones in equation (22) when n > 0, in particular
we have cn(0) = 0 for n > 0.
Consider the mapping z ∈ R

+ 7→ ψ(z) = (T (z),q(z)) ∈ R (AN),

ψ(z) = f(z)ϕD +
∑

n∈Z⋆

αncn(z)Ψn +
∑

n>0

βne
λnzΨn, (32)

for a given sequence (βn)n>0 satisfying
∑

n∈Z⋆ |βn|
2 < +∞.

When comparing (32) with the solution on infinite domain (23) we point out
that here the functions cn(z) have an alternative definition for n > 0. We also
underline that the additional term

∑
n>0 βne

λnzΨn ∈ R (AD) is well defined
since λn < 0 for n > 0.
The results of proposition 1 extends in this context.

Proposition 4. If we assume that f ∈ C1(R+) with f ′ bounded then,

ψ ∈ C1(R+,H) ∩ C0(R+, D(A)),
d

dz
ψ = Aψ on R

+, (33)

and T is a solution to the Dirichlet problem (4) (13) in the weak sense stated
in lemma 1. With remark 1 the temperature T reads:

T = f(z) +
∑

n∈Z⋆

αncn(z)Tn +
∑

n>0

βne
λnzTn.

If we moreover assume that f ∈ C2(R+) with f ′′ bounded we get the additional
regularity,

ψ ∈ C2(R+,H) ∩ C1(R+, D(A)).
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and T is a strong solution of the Dirichlet problem (4) (13).
We refer to proposition 1 for the translation of these regularity results in term
of temperature T and of heat flux k∇T .

Remark 2. The meaning of the supplementary term ψ2(z) =
∑

n>0 βne
λnzΨn

is the following. The function ψ2 is a solution to the homogeneous Dirichlet
problem (4) (13) (ie taking f = 0, see the proof below). This is true for
any sequence (βn)n>0 satisfying

∑
n∈Z⋆ |βn|

2 < +∞. Its role is to satisfy a
prescribed entry condition at z = 0. Let us for instance consider the Dirichlet
entry condition T|z=0 = E ∈ L2(Ω). Then the sequence (βn)n>0 must verify,
since cn(0) = 0 for n > 0:

f(0) +
∑

n<0

αncn(0)Tn +
∑

n>0

βnTn = E.

It has been proven in [2] that such a sequence exists and is unique. A numerical
method to approximate (βn)n>0 is also developed in this work: more details
will be given in the numerical section 4.1.

As in the infinite domain case, we could weaken the regularity assumptions
on f , allowing in particular jumps of f or of f ′. Results in corollary 3 can
easily be adapted here and we will not detail this matter.
Far field estimates can be derived exactly as in corollary 2 (because z →∑

n>0 βne
λnzΨn goes to 0 as well as all its derivatives as z → +∞). We only

recall these estimates:

• if
∫ +∞

0
|f ′|dz < +∞, then T (z)→ f(+∞) as z → +∞ in L2(Ω),

• if
∫ +∞

0
|f ′′|dz < +∞, then ∂zT (z) → f ′(+∞) and T (z) ˜

z→+∞
f(z) +

f ′(+∞)uD as z → +∞ in L2(Ω) (with uD defined in remark 1).

Proof. Let us decompose ψ(z) = ψ1(z) + ψ2(z) with,

ψ1(z) = f(z)ϕD +
∑

n∈Z⋆

αncn(z)Ψn, ψ2(z) =
∑

n>0

βne
λnzΨn.

The first term ψ1 can be analyzed exactly as in the proof of proposition 1:
in particular ψ1 ∈ C

1([0,+∞),H)∩C0([0,+∞), D(A)) and if f ∈ C2([0,+∞))
with f ′′ bounded then ψ1 ∈ C2([0,+∞),H) ∩ C1([0,+∞), D(A)). Moreover
∂zψ1 = Aψ1, and denoting ψ1 = (T1,q1) then T1 = f(z) on ∂Ω.

The second term ψ2 in turn also can be analyzed exactly as in the proof of
corollary 3 (since

∑
n>0 |βn|

2 < +∞): ψ2 ∈ C
∞(R+, D(A)) and ∂zψ1 = Aψ1.

We also have ψ2 = (T2,q2) ∈ D(AD) so that T2 = 0 on ∂Ω.
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3.2 The Neumann problem for Q 6= 0

We simply denote λn = λNn , Ψn = ΨN
n and αn = αN

n . We assume that
f ∈ C1([0,+∞) with both f and f ′ bounded.
The functions cn(z) now are defined for n ∈ Z

⋆ by,

cn(z) =

∫ +∞

z

f(ξ)eλn(z−ξ) dξ if n < 0, cn(z) = −

∫ z

0

f(ξ)eλn(z−ξ) dξ if n > 0.

They are well defined, bounded, differentiable and satisfy c′n = λncn−f . These
functions only differs from the ones in equation (27) when n > 0, in particular
we have cn(0) = 0 for n > 0.
We consider the mapping z ∈ R

+ 7→ ψ(z) = (T (z),q(z)) ∈ R (AN),

ψ(z) = F (z)ϕN +
∑

n∈Z⋆

αncn(z)Ψn +
∑

n>0

βne
λnzΨn, (34)

for F ′ = f and for some sequence (βn)n>0 satisfying
∑

n∈Z⋆ |βn|
2 < +∞.

This mapping can be analyzed exactly as in the Dirichlet problem: ψ ∈
C2(R,H) ∩ C1(R, D(A)) and ∂zψ = Aψ. Moreover the temperature T is a
strong solution to the Neumann problem (4) (14). With remark 1 the temper-
ature T has the form,

T =
P

Q
F (z) +

∑

n∈Z⋆

αncn(z)Tn +
∑

n>0

βne
λnzTn,

Remark 3. As stated in remark 2, the role of ψ2(z) =
∑

n>0 βne
λnzΨn is

to satisfy a prescribed entry condition. The function ψ2 is a solution to the
homogeneous Neumann problem (4) (14) (as long as

∑
n∈Z⋆ |βn|

2 < +∞).
For instance for the Dirichlet entry condition T|z=0 = E, the sequence (βn)n>0

must satisfy,
P

Q
F (0) +

∑

n<0

αncn(0)Tn +
∑

n>0

βnTn = E.

Solutions can be obtained with weaker regularity assumptions on the bound-
ary data f , as in corollary 5. Far field estimates can be derived exactly as in
corollary 4; because z →

∑
n>0 βne

λnzΨn goes to 0 as well as all its derivatives
as z → +∞.

3.3 The Neumann problem for Q = 0

We keep here the notations and definition of the previous section 3.2.
We introduce a primitive F of f and a primitive G of F . We consider the
mapping z ∈ R

+ 7→ ψ(z) = (T (z),q(z)) ∈ RN ,

ψ(z) = aG(z)Ψ0 + F (z)ϕN +
∑

n∈Z⋆

αncn(z)Ψn +
∑

n>0

βne
λnzΨn, (35)
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with a defined in equation (20) and for some sequence (βn)n>0 satisfying∑
n∈Z⋆ |βn|

2 < +∞.
As in section 3.2, if f ∈ C1([0,+∞) with both f and f ′ bounded then
ψ ∈ C2(R,H) ∩ C1(R, D(A)) and ∂zψ = Aψ. Moreover the temperature
T is a strong solution to the Neumann problem (4) (14). The temperature T
reads,

T = aG(z) + F (z)(au0 + b) +
∑

n∈Z⋆

αncn(z)Tn +
∑

n>0

βne
λnzTn,

4 Numerical results

Our original purpose is the description of the heat exchanges in heating pipes
and heat exchangers. In the previous two sections we derived analytical solu-
tions for the temperature and the heat flux on such devices. In this section
we provide numerical illustrations and we analyze the efficiency for these an-
alytical solutions to describe the heat exchanges between a fluid flowing in
a tube and the surrounding solid. We consider a tube-like geometry Ω × I
either with I = R or I = R

+. The fluid is assumed to flow in a circular duct.
Following adimentionalisation process in section 1, the external radius of the
duct is taken equal to one. The velocity v has the Poiseuille profile:

v(x) = Pe(1− ‖x− x0‖
2),

with x0 the center of the circular duct and with Pe the Péclet number. The
thermal diffusivity is taken as homogeneous, k(x) = 1.
We will consider four test cases. The two first ones have an axisymmetric
configuration. The third one is a periodic configuration describing a collection
of parallel circular ducts. The last test case is a counter current configuration
where Q = 0.

4.1 Implementation

For the hereby developed analytical solutions, their numerical approximation
follows the same two steps. Firstly truncate the series for −N ≤ n ≤ N .
Secondly approximate the N th first eigenvalues λn and eigenfunctions Ψn (we
omitted here the indexes D and N relatively to the Dirichlet or Neumann
boundary condition). Once obtained these approximations, the coefficients αn

in (15) (only depending on the Ψn) and the functions cn(z) (that only depend
on the λn and on the boundary data on ∂Ω× I) can in turn be approximated.
The numerical approximation of the λn and of the Ψn has been presented in
[2] for the Dirichlet case. We present the adaptation of the method to the
Neumann case.

Definition 2 (weak formulation). The problem to be solved is, find (Ψ, λ) ∈
D(AN) × R

∗ so that ANΨ = λΨ. It is equivalent with: find (u, s) ∈ H1(Ω) ×
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d = 2

l = 4

l = 4

2R = 13
l

d = 2

Figure 1: Geometrical configurations. On the left, periodic test case: the
parallel circular ducts have diameter d = 2 and are embedded in square cells
of size l = 4 and of same center. On the Right, counter-current test case: two
circular ducts of same diameter d = 2 are embedded in a solid matrix, also
circular, with diameter 2R = 13. The two ducts are symmetrically located on
each side of the matrix center, l denotes their distance that will vary.

H1(Ω) and for λ ∈ R
∗ so that for all (ũ, s̃) ∈ H1(Ω)× H1(Ω) we have,

a1
[
(u, s), (ũ, s̃)

]
= λ a2

[
(u, s), (ũ, s̃)

]
, (36)

where the bilinear products a1 and a2 are defined by,

a1
[
(u, s), (ũ, s̃)

]
=

∫

Ω

(
v uũ+ k∇u · ∇s̃+ k∇ũ · ∇s

)
dx,

a2
[
(u, s), (ũ, s̃)

]
=

∫

Ω

(
kuũ+ k∇s · ∇s̃

)
dx.

Then the eigenfunction Ψ is given by Ψ = (u, k∇s).
Here the unknown Ψ has been replaced by (u, s) ∈ H1(Ω) × H1(Ω) so that
Ψ = (u, k∇s). This is possible because Ψ ∈ RN (see corollary 1): such a
change of variable avoids any problem eventually caused by the kernel of AN

with the numerical methods.

Proof. Let Ψ ∈ D(AN) satisfy ANΨ = λΨ for some λ ∈ R
⋆. Then Ψ ∈ RN

and Ψ = (u, k∇s) for some (u, s) ∈ H1(Ω)×H1(Ω) (see corollary 1). We have
for all (ũ, s̃) ∈ H1(Ω)× H1(Ω) that

(
A(u, k∇s)|(ũ, k∇s̃)

)
H
= λ ((u, k∇s)|(ũ, k∇s̃))H .

Developing the H-scalar product and using the Green formula exactly gives
(36).

Conversely consider a solution (u, s) to (36) and form Ψ = (u, k∇s). One
has to show that Ψ ∈ D(AN) and that ANΨ = λΨ. Writing (36) for s̃ = 0
and for a smooth test function ũ with compact support in Ω gives,

−〈div(k∇s), ũ〉 =

∫

Ω

k∇s · ∇ũ dx =

∫

Ω

(λk − v)uũ dx,
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where 〈·, ·〉 denotes the distribution product. This means that k∇s ∈ Hdiv(Ω)
and that k−1(vu − div(k∇s)) = λu. Meanwhile writing (36) for ũ = 0 gives
that k∇u = k∇s. As a result we have Ψ ∈ D(A) and AΨ = λΨ. It only
remains to prove that k∇s ·n = 0 on ∂Ω to ensure that Ψ ∈ D(AN). This can
be seen simply by rewriting (36) for s̃ = 0 and ũ ∈ H1(Ω),

∫

Ω

k∇s · ∇ũ dx =

∫

Ω

(λk − v)uũ dx,

and performing an integration by part it follows that,

∫

∂Ω

k∇s · nũds =

∫

Ω

(λku− vu+ div(k∇s)) ũ dx = 0,

ensuring that k∇s · n = 0 on ∂Ω.

The weak formulation (36) is used in practice for the approximation of
the eigenvalues/eigenfunctions (λn,Ψn) by considering a P 1-Lagrange finite
element space P 1(M) over a meshM of the domain Ω. Considering a classical
basis of P 1(M), problem (36) leads to the resolution of the eigenvalue problem:
find λ ∈ R and X ∈ P 1(M) so that,

ShX = λMhX,

where Sh and Mh respectively are the stiffness and mass matrices associated
with the products a1 and a2 written on the considered bases of P 1(M). The
matrix Mh is symmetric positive definite and the matrix Sh as well excepted
when Q = 0, in this case Sh is semi definite positive with a one dimensional
kernel.
The assembling for these two matrices is done using the finite element library
FreeFem++ [18], being given a mesh of Ω also built using FreeFem++. In
practice this assembling only involves to build sub-block-matrices that sim-
ply are classical mass and stiffness matrices, ie matrices for the L2 products
(u, v) 7→

∫
Ω
uv dx and (u, v) 7→

∫
Ω
k∇u·∇v dx, which are built by FreeFem++.

The resolution of the spectral problem ShX = λMhX uses the arpack++ li-
brary1.
Eventually, when considering a semi-infinite problem, we also have to deter-
mine the coefficients (βn)n>0 in (32) or (34). This question is the topic of
[15] for general entry conditions. For Dirichlet entry conditions it has primary
been addressed in [2]: we will adopt this strategy here. The sequence (βn)n>0

is approximated by a vector b ∈ RN solution of a (symmetric positive definite)
Khb = Eh. The right hand side Eh depends on the entry condition. The matrix
Kh = [kij ] is computed using the eigen functions Tn: simply kij =

∫
Ω
TiTj dx.

1Arpack software: http://www.caam.rice.edu/software/ARPACK/





Julien Bouyssier, Charles Pierre and Franck. Plouraboué

4.2 Axisymmetric configuration

We first consider an axisymmetric configuration: the domain Ω is the circle
with radius R = 2 and center 0, the fluid part is is the circle of radius 1 and
same center 0.

Finite element solver evaluation
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Figure 2: Eigenvalue convergence. The convergence of the first downstream
(resp. upstream) computed eigenvalue towards its exact value λ1 (resp. λ−1)
with respect to the mesh size h is here depicted on the left (resp. right) for
three values of the Péclet number (Pe =0.1, 1 and 10). The relative error is
represented as a function of the mesh size h using a (decimal) Log/Log scale.
Each plot displays the same linear behavior with slope 2.

For this geometry, both the eigenvalues and the eigenfunctions have an
analytical definition following a technique presented in [17]. These analytical
solutions can be computed rapidly with an arbitrary small accuracy using a
Maple code. This code results will be considered as reference solutions. On the
other hand we presented in the previous section our strategy to approximates
the λn and the Ψn on an arbitrary domain Ω using a mesh of Ω and a finite
element solver.
The purpose of this sub section is to evaluate the accuracy of this finite element
solver by comparing solutions obtained with the finite element solver with the
reference ones. We set the boundary condition to the Neumann case. A series
of 16 meshes has been considered with a mesh size h varying between 0.157
and 0.0157.
We first analyze the convergence of the computed eigenvalues: results are de-
picted on figure 2. The relative error of the first downstream and upstream
eigenvalues with respect to their exact values λ1 and λ−1 has been computed
on each of these meshes. We considered three values of the Péclet number:
Pe = 0.1 (dominant diffusion), Pe =1 and Pe =10 (dominant convection). In
all cases, the error goes to zero with an order two convergence with h.
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Figure 3: Convergence of the coefficients αn. The convergence of the first
downstream (resp. upstream) computed coefficients αn towards its exact value
α1 (resp. α−1) with respect to the mesh size is here depicted on the left (resp.
right) for three values of the Péclet number (Pe =0.1, 1 and 10). The relative
error is represented as a function of the mesh size h using a (decimal) Log/Log
scale. Each plot displays the same linear behavior with slope 2.

With the same setting we analyzed the convergence of the corresponding coef-
ficients α±1 that involve the boundary integral of T±1. The results are depicted
on figure 3. The convergence for the αn is of order 2 with the mesh size.

First axisymmetric test case

As a first test case we consider the Neumann problem (14) on the infinite
domain Ω × R. We impose the heat flux f(z) = 1 for z < 0 and f(z) = 0
for z > 0 on the boundary ∂Ω × R, whose solution is given in corollary 5.
The Péclet number is set to Pe = 10. We denote by T the solution given
by equation (30) and we denote TN its approximation considering the N th-
first computed eigenmodes. We are interested with the computation of the
fluid/solid heat flux ϕ(N),

ϕ(N) =

∫ +∞

0

∫

∂O

−k∇TN · n dl dz. (37)

with O the fluid domain. So defined the fluid/solid heat flux for the exact
solution T is given by ϕ = ϕ(+∞). This limit value ϕ has been evaluated
using an extrapolation procedure. Using this evaluation of ϕ we computed the
relative error eϕ(N) on the fluid/solid heat flux computation,

eϕ(N) =

∣∣∣∣
ϕ(N)− ϕ

ϕ

∣∣∣∣ ,

its behavior is depicted on figure 4 (on the left). It can be seen on this graph
that the error goes to zero with N and that the odd and even values of the
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Figure 4: Relative error eϕ(N) on the computed fluid/solid heat flux ϕ(N)
according to the number of considered eigenmodes N . On the left: infinite
domain configuration. The ood and even values of the error have been plotted
separately. By doing so we observe the same algebraic convergence of order 2
with N of the error: eϕ(N) = O(N−2). On the right: semi-infinite configu-
ration. Again we distinguished between the odd and even values of the error
to observe an exponential convergence eϕ(N) = O(exp(cN)) where c has been
evaluated to c ≃ −0.22.

error follow two different curves. This two curves however display the same
asymptotic behavior: a geometric convergence towards zero of order 2 with N .
In addition to the convergence asymptotic, it is quite important to notice that
one can get very good approximations on the fluid/solid heat flux using very
few modes. We always have a prediction with less than 10 % of accuracy and
using only 3 modes this accuracy is less than 1 %.

Second axisymmetric test case

For the second test case we now consider the Neumann problem (14) on a semi-
infinite domain. We impose the heat flux f(z) on the boundary ∂Ω× (0,+∞)
with,

f(z) = 1 for z ∈ [a, b] and f(z) = 0 otherwise,

which means that we consider here a tube insulated outside the heated region
[a, b] and with a homogeneous heating f(z) = 1 inside [a, b]. We set the
heated region defining a = 2R = 4 and b = 3R = 6. The homogeneous
Dirichlet condition T = 0 is considered at the entry z = 0 modeling a cold
fluid injection.
The exact solution T is given by equation (34). The function F (z) is any
primitive of f(z) and is defined up to a constant. We set F0(z) the primitive
of f(z) so that F0(0) = 0 and we write F (z) = F0(z) + β0Q/P with β0 a
constant. By doing so the constant on F (z) is considered as a supplementary
unknown β0. Introducing the supplementary eigenmode T0 = 1 and λ0 = 0,
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Figure 5: Semi infinite test case. Left: relative error eT∞(N) on the predicted
temperature at z = +∞. We observe a geometric convergence towards zero
with a high order evaluated to 5.7. Right: representation of the temperature
profiles z 7→ T (r, z) for three fixed values of r: r = R (boundary), r = 1
(fluid/solid interface) and r = 0 (duct center). The heated region (interval [a, b]
where f(z) 6= 0) is between z = 2R = 4 and z = 3R = 6. The temperature
T∞ at z = +∞ is also plotted.

We can rewrite the temperature T as:

T = F0(z)P/Q+
∑

n∈Z⋆

αncn(z)Tn +
∑

n≥0

βne
λnzTn,

We approximate T by TN using a truncation at order N of the series and by
computing the N th-first eigenmodes using the maple code. The computation
of the constants (βn)0≤n≤N is done following [2] as briefly presented in section
4.1. We numerically observed that the entry condition T = 0 ensures the ex-
istence and unicity of the constants β0, . . . , βN (also depending on N).
With this setting we computed the fluid/solid heat flux ϕ(N) as previously
defined in (37). The exact heat flux ϕ is again computed by extrapolation on
the sequence ϕ(N) allowing to compute the relative error eϕ(N) on the com-
puted flux. The relative error is depicted on figure 4 on the right. To obtain
the asymptotic regime we again had to distinguish between the odd and even
values on the flux. The convergence speed is really fast and is more than alge-
braic. We observed an exponential convergence eϕ(N) = O(exp(−cN)) with
1/5 ≤ c ≤ 1/4, precisely c has been evaluated to c ≃ −0.22.
An important remark is that we have an easy evaluation of the limit temper-
ature as z goes to +∞. For a given N , we have:

T∞(N) := lim
z→+∞

TN(z) =
P

Q

∫ +∞

0

f(z)dz + β0.

The exact temperature at +∞ T∞ := limz→+∞ T (z) is evaluated by extrap-
olation on the sequence T∞(N) and we define the relative error eT∞

on the
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temperature at infinity as,

eT∞(N) =

∣∣∣∣
T∞(N)− T∞

T∞

∣∣∣∣ .

Its behavior is depicted on figure 5 on the left. We observed a extremely fast
convergence of T∞(N) towards T∞ of algebraic type eT∞(N) = O(N−c) and
with order c ≃ 5.7. Again, beyond the convergence asymptotic, the important
fact is that we already have a precision better than 0.1 % using only one Graetz
mode !

It is quite interesting that the high precision and the fast convergence
for the far field temperature and the fluid/solid heat flux computation are
here obtained even considering a non-regular (discontinuous) boundary heat
source term f(z). Eventually, we also plotted the temperature profiles on this
configuration. The three profiles z 7→ T (r, z) for r = R, r = 1 and r = 0 have
been plotted on figure 5. They represent the temperature at the solid wall
surface, at the fluid/solid interface and at the duct center. One can check on
these profiles that the entry condition T = 0 at z = 0 is well respected. The
temperature secondly increases between the entry z = 0 and the starting point
of the heated region z = a. On the right of the heated region, the temperature
reaches rapidly the limit temperature T∞ as z → +∞.

4.3 Periodic test case

We consider in this test case a periodic geometry depicted on figure 1. It con-
sists in a series of parallel circular ducts, in which a fluid is flowing, disposed
inside a solid. The domain Ω is not bounded but periodic in the horizontal
direction. It is composed of a series of squares of size l = 4. Each square
is made of a fluid domain: the circle of radius 1 and with center the square
center, and of a solid matrix. The distance between two successive ducts then
also is l = 4.
We consider an infinite configuration Ω × R with an imposed boundary flux
given by set to f(z) = 1 if z < 0 and f(z) = 0 for z > 0. Considering one ele-
mentary square, a Neumann boundary condition is considered on its top and
bottom edges whereas periodic conditions on T and ∂xT are imposed on its left
and right edges. For symmetry reasons, this boundary condition is equivalent
with an homogeneous Neumann one on the whole square cell boundary. The
analytical solution for this problem is in corollary 5. The Péclet number for
each duct is constant Pe = 10. The tenth first Graetz modes are depicted on
figure (6). One can note on this figure that the apparent structural complexity
of the Graetz modes increases with N .
Our focus concerns the influence of modes truncation on exchanges estimation
in order to evaluate exchanger performance. We computed on this configu-
ration the fluid/solid heat flux ϕ(N) as previously defined in (37). Figure 6
illustrates the contribution of the first ten contributing modes to the exchange
flux. For the chosen convection dominated examined situation, Pe = 10, one
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Figure 6: Periodic configuration. Fluid-solid flux computed with the ten first
eigenmodes and their visualizations

can see that few Graetz modes are enough to obtain accurate estimates of the
fluid/solid flux. This is more precisely stated in table 1 where the fluxes val-
ues ϕ(N) relatively to figure 6 have been reported together with the associated
relative error eϕ(N). Though these results (on the contrary of the previous
computation in section 4.2) might be blurred by some numerical error induced
by discretization, they clearly indicate that with very few Graetz modes one
obtains accurate estimations on the fluid/solid flux ϕ with less than 1% of
relative error. This is a very interesting observation, that convection domi-
nated configuration provide an excellent performance for the proposed mode
decomposition, so that it is quite easy to get fast and accurate estimate of
the exchange performance using the proposed formulation, and this even for a
more complex geometrical configuration.

Table 1: Periodic configuration. Fluid/solid flux ϕ(N) with respect to N and
the associated relative error eϕ(N), the reported figures are relative to figure
6.

N 1 2 3 5 8 10

ϕ(N) -7.10 -7.28 -7.11 -6.98 -7.02 -7.04
eϕ(N) 0.011 0.036 0.012 0.007 0.002 0.001
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4.4 Counter current case
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Figure 7: Counter current configuration. Fluid/solid heat exchange on the
left and right duct boundaries. These fluxes are computed with an increasing
number N of eigen modes, the dependence of the computed flux with N is here
depicted for various values of the Péclet number (above), and for a varying
distance l between the two pipes (below).

We finally consider the counter current configuration, for which the total
debit Q = 0. It is depicted on the right side of figure 1 and consists of two
parallel circular ducts, where a fluid is flowing in opposite directions. The two
ducts are encapsulated inside a cylindrical solid with diameter 2R = 13. The
two ducts are symmetrical with the solid center and their centers distance l is
variable. Various values for the Péclet number will be considered.
We adopt an infinite configuration where the outer solid wall is heated for
z < 0 and verifies a zero flux condition for z > 0 as described in corollary
5. The temperature in this case is given by (31): in the z > 0 region, the
functions F and G are equal to zero. We concentrate on the heat flux on the
two internal duct boundaries for z > 0, as defined in (37). These fluxes only
depend on the constant C1 in (31), this constant represent the heat flux ∂zT
as z → +∞ and is set to C1 = 0 here. The roles of the two ducts is absolutely
non symmetric. The fluid in the left tube flows towards the z > 0 region. This
fluid is heated in the z < 0 region by heat diffusion process in the solid. It
then brings heat by convection to the z > 0 region: then this tube can be
considered as the input duct. On the contrary the fluid in the right tube flows
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towards the z < 0 region and it evacuates heat by convection from the z > 0
region: it can be considered as the output duct.
On figure 7 is displayed the evaluation of the fluid/solid exchange on both left
and right pipe boundaries. These fluxes are computed for three values of the
Péclet number, Pe = 0.1, Pe = 1 or Pe = 10 and for a distance l = 1.5d = 3
between the two ducts centers above. Below, the Péclet number is set to
Pe = 10 and the distance l between two ducts centers varies from l = 1.5d = 3
and l = 3d = 6 to l = 4.5d = 9. It is interesting to mention that the con-
vergence rate of the flux according to the number of considered eigenmodes is
sensitive to the chosen geometrical parameters as well as to the Péclet num-
ber. Qualitatively the closer the tubes, the faster mode truncation converges
to the exchange flux. On the other hand, increasing the Péclet number pro-
vides a slower mode convergence as observed on the upper part of figure 7.
Nevertheless, an estimate of the exchange flux accurate within a few percent
is obtained in every configurations when aggregating the contribution of less
than ten modes.

Figure 8: Counter current configuration. Fluid/solid flux on the left tube
boundary for z > 0 computed with the ten first Graetz modes and their visu-
alizations (for Pe=10 and l = 1.5d).

Another interesting observation is provided on figure 8 where one can observe
the spatial structure of the most contributing modes to the exchange flux. We
focus for this figure on the case Pe = 10, l = 1.5d and on the left tube. The
spectral convergence of the fluid/solid flux on this left tube is displayed to-
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gether with the visualization of the contributing Graetz modes. As for figure
6, it can be observed that the spatial structure of the modes increases in com-
plexity as their contribution to the exchange flux decreases. For example, the
first mode is mostly of zeroth azimuthal order, the second and third modes are
of first azimuthal order, the fourth to six modes are principally of azimuthal
order three, etc... Nevertheless this observation is not a golden rule since the
seventh mode has a azimuthal order one, with an horizontal symmetry as op-
posed to the second mode which also has a first azimuthal order but with a
vertical symmetry. This observation indicates that the chosen configurations
favors some symmetries.
Finally the modal convergence of the flux ϕ(N) displayed on figure 8 is detailed
in table 2. It can be observed that considering a few Graetz modes provides
an accurate estimation of the fluid/solid flux: 5 to 10 Graetz modes are suffi-
cient to get a 1% accurate evaluation. This confirm the observation made for
the periodic test case, even considering convection dominated configuration
and a complex geometry, the Graetz mode decomposition remains efficient to
accurately capture the physically important features of the heat transfer.

Table 2: Counter current configuration. Fluid/solid flux ϕ(N) for the left tube
with respect to N and the associated relative error eϕ(N), the reported figures
are relative to figure 8.

N 1 2 3 5 8 10

ϕ(N) -25.84 -39.32 -38.03 -36.56 -37.02 -37.10
eϕ(N) 0.30 0.058 0.024 0.016 0.003 0.001

4.5 Conclusion

This work has permitted to extent the two-dimensional mapping of longitu-
dinally invariant convection/diffusion problems to very general configurations
with either prescribed field or fluxes at the outer boundary. In the case of
prescribed fluxes, it is necessary to distinguish the case of zero total convec-
tive flux (typically encountered in counter-current configurations) from the
case of non-zero convective flux. In both cases, we found general analyti-
cal expression for the longitudinal variation of the solution, which depends
on the applied boundary condition. Those considerations apply to convective
exchangers and have been illustrated in some non-trivial configuration to il-
lustrate the versatility and the numerical efficiency of the method for studying
complex configurations. This analysis opens new perspective for a systematic
and accurate study of convective exchangers and towards their optimization.
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