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Abstract

We prove convergence of discrete duality finite volume (DDFV)
schemes on distorted meshes for a class of simplified macroscopic bido-
main models of the electrical activity in the heart. Both time-implicit
and linearised time-implicit schemes are treated. A short description is
given of the 3D DDFV meshes and of some of the associated discrete
calculus tools. Several numerical tests are presented.
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Introduction

We consider the heart of a living organism that occupies a fixed domain Ω,
which is assumed to be a bounded open subset of R3 with Lipschitz boundary
∂Ω. A prototype model for the cardiac electrical activity is the following
nonlinear reaction-diffusion system

{
∂tv − div (Mi(x)∇ui) + h[v] = Iapp, (t, x) ∈ Q,
∂tv + div (Me(x)∇ue) + h[v] = Iapp, (t, x) ∈ Q, (1)

where Q denotes the time-space cylinder (0, T )× Ω.
This model, called the bidomain model, was first proposed in the late 1970s

by Tung [64] and is now the generally accepted model of electrical behaviour
of cardiac tissue (see Henriquez [41], Keener and Sneyd [48]). The functions
ui = ui(t, x) and ue = ue(t, x) represent the intracellular and extracellular
electrical potentials, respectively, at time t ∈ (0, T ) and location x ∈ Ω. The
difference v = ui − ue is known as the transmembrane potential. The conduc-
tivity properties of the two media are modelled by anisotropic, heterogeneous
tensors Mi(x) and Me(x). The surface capacitance of the membrane is usually
represented by a positive constant cm; upon rescaling, we can assume cm = 1.
The stimulation currents applied to the intra- and extracellular spaces are rep-
resented by an L2(Q) function Iapp = Iapp(t, x). Finally, the transmembrane
ionic current h[v] is computed from the potential v. The system is closed
by choosing a relation that links h[v] to v and specifying appropriate initial-
boundary conditions. We stress that realistic models include a system of ODEs
for computing the ionic current as a function of the transmembrane potential
and a series of additional “gating variables” aiming to model the ionic transfer
across the cell membrane (see, e.g., [56, 47, 57, 48]). This makes the relation
h = h[v] non-local in time.

Herein we focus on the issue of discretisation in space of the bidomain
model. The presence of the ODEs, some of them being quite stiff, greatly
complicates the issue of discretisation in time. It also results in a huge gap
between theoretical convergence results and the practical computation of a re-
liable solution. We surmise that the precise form of the relations that link h[v]
to v is not essential for the validation of the space discretisation techniques.
Therefore, as in [11, 12], we study (1) under the greatly simplifying assumption
that the ionic current is represented locally, in time and space, by a nonlinear
function h(v). However, such a simplification allows to mimic, to a certain ex-
tent, the depolarisation sequence in the cardiac tissue, taking the ionic current
term h[v] to be a cubic polynomial (bistable equation); this choice models the
fast inward sodium current that initiates depolarisation (cf., e.g., [20]).

In the context of electro-cardiology the relevant boundary condition would
be a Neumann condition for the fluxes associated with the intra- and extra-
cellular electrical potentials:

Mi,e(x)∇ui,e · n = si,e on (0, T )× ∂Ω.
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It serves to couple the heart electrical activity with the much weaker electrical
phenomena taking place in the torso. The simplest case is the one of the
isolated heart, namely si,e = 0. For the mathematical study we are heading
to, we consider rather general mixed Dirichlet-Neumann boundary conditions
of the form

ui,e = gi,e on (0, T )× ΓD, Mi,e(x)∇ui,e · n = si,e on (0, T )× ΓN , (2)

where ∂Ω is partitioned into sufficiently regular parts ΓN and ΓD, and n de-
notes the exterior unit normal vector to the Neumann part ΓN of the boundary
∂Ω defined a.e. with respect to the two-dimensional Hausdorff measure H2 on
∂Ω. To keep the analysis simple, let us assume that si,e ∈ L2((0, T )×ΓN); for
gi,e, we assume gi,e ∈ L2(0, T ; H1/2(ΓD)) (in fact, we consider gi,e extended to
L2(0, T ; H1(Ω)) functions).

Regarding the initial data, we prescribe only the transmembrane potential:

v(0, x) = v0(x), x ∈ Ω. (3)

Clearly, (1) and (3) are invariant under the simultaneous change of ui,e into
ui,e + k, k ∈ R. In the case ∂Ω = ΓN , ΓD = Ø, also (2) is invariant under this
change; therefore, for the sake of being definite, we normalise ue by assuming

whenever ΓD = Ø,

∫

Ω

ue(t, ·) = 0 for a.e. t ∈ (0, T ). (4)

It is easy to see that the existence of solutions to (1),(3) requires the compat-
ibility condition

whenever ΓD = Ø,

∫

∂Ω

si(t, ·) + se(t, ·) = 0 for a.e. t ∈ (0, T ). (5)

Notice that the diffusion operators Mi,e(x)∇ui,e in (1) are linear in the
gradient ∇ui,e, heterogeneous and anisotropic, and time-independent; these
assumptions seem to be sufficiently general to capture the phenomena of the
electrical activity in the heart. More general models with time-dependent and
nonlinear in ∇ui,e diffusion of the Leray-Lions type were studied in [11]. Here
we assume that

(
Mi,e(x)

)
x∈Ω

is a family of symmetric matrices, uniformly
bounded and positive definite:

∃ γ for a.e. x ∈ Ω, ∀ ξ ∈ R3,
1

γ
|ξ|2 ≤ (Mi,e(x)ξ) · ξ ≤ γ|ξ|2.

In particular, we have Mi,e ∈ L∞(Ω).
Now let us describe in detail the ionic current function h = h(v). We

assume that h : R → R is a continuous function, and that there exist r ∈
(2,+∞) and constants α,L, l > 0 such that

1

α
|v|r ≤ |h(v)v| ≤ α (|v|r + 1) , (6)
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h̃ : z 7→ h(z) + Lz + l is strictly increasing on R, with lim
z→0

h̃(z)/z = 0. (7)

For the later use, we set

b : z 7→ h̃(z)/z, b(0) = 0.

It is rather natural, although not necessary, to require in addition that

∀ z, s ∈ R (h̃(z)− h̃(s))(z − s) ≥ 1

C
(1 + |z|+ |s|)r−2|z − s|2. (8)

According to [19, 22], the most appropriate value is r = 4, which means
that the non-linearity h is of cubic growth at infinity. Assumptions (6),(7)
are automatically satisfied by any cubic polynomial h with positive leading
coefficient.

A number of works have been devoted to the theoretical and numerical
study of the above bidomain model. Colli Franzone and Savaré [22] prove the
existence of weak solutions for the model with an ionic current term driven by
a single ODE, by applying the theory of evolution variational inequalities in
Hilbert spaces. Sanfelici [61] considered the same approach to prove the con-
vergence of Galerkin approximations for the bidomain model. Veneroni in [65]
extended this technique to prove existence and uniqueness results for more so-
phisticated ionic models. Bourgault, Coudière and Pierre [15] prove existence
and uniqueness results for the bidomain equations, including the FitzHugh-
Nagumo and Aliev-Panfilov models, by applying a semigroup approach and
also by using the Faedo–Galerkin method and compactness techniques. Re-
cently, Bendahmane and Karlsen [11] proved the existence and uniqueness for a
nonlinear version of the simplified bidomain equations (1) by using a uniformly
parabolic regularisation of the system and the Faedo–Galerkin method.

Regarding finite volume (FV) schemes for cardiac problems, a first ap-
proach is given in Harrild and Henriquez [39]. Coudière and Pierre [29] prove
convergence of an implicit FV approximation to the monodomain equations.
We mention also the work of Coudière, Pierre and Turpault [30] on the well-
posedness and testing of the DDFV method for the bidomain model. Ben-
dahmane and Karlsen [12] analyse a FV method for the bidomain model with
Dirichlet boundary conditions, supplying various existence, uniqueness and
convergence results. Finally, Bendahmane, Bürger and Ruiz [10] analyse a
parabolic-elliptic system with Neumann boundary conditions, adapting the
approach in [12]; they also provide numerical experiments.

In this paper, as in [12], we use a finite volume approach for the space
discretisation of (1) and the backward Euler scheme in time. Due to a dif-
ferent choice of the finite volume discretisation, we drop the restrictions on
the mesh and on the isotropic and homogeneous structure of the tensors Mi,e

imposed in [12]. We also consider general boundary conditions (2). The space
discretisation strategy we use is essentially the one described and implemented
by Pierre [59] and Coudière et al. [30, 31]. More precisely, we utilise different
types of DDFV discretisations of the 3D diffusion operator; along with the





DDFV schemes for the bidomain cardiac model

scheme of [59, 31], we examine the schemes described in [4, 46, 2] (see also [5])
and [24, 25]. It should be noticed that 2D bidomain simulations on slices of
the 3D heart are also of interest. The standard 2D DDFV construction can be
applied to problem (1),(2),(3) on 2D polygonal domains; the 3D convergence
results readily extend to the 2D case.

The DDFV approximations were designed specifically for anisotropic and/or
nonlinear diffusion problems, and they work on rather general (eventually,
distorted, non-conformal and locally refined) meshes. We refer to Hermeline
[42, 43, 44, 45, 46], Domelevo and Omnès [33], Delcourte, Domelevo and Omnès
[32], Andreianov, Boyer and Hubert [7], and Herbin and Hubert [40] for back-
ground information on DDFV methods. Most of these works treat 2D linear
anisotropic, heterogeneous diffusion problems, while the case of discontinuous
diffusion operators have been treated by Boyer and Hubert in [17]. Hermeline
[45, 46] treats the analogous 3D problems, [32, 49, 50] treat the Stokes problem
in 2D and in 3D, [27] treats linear elliptic convection-diffusion equations, and
the work [7] is devoted to the nonlinear Leray-Lions framework.

A number of numerical simulations of the full bidomain system (the PDE
(1) for ui,e plus ODEs for h[v]) coupled with the torso can be found in [53, 54,
30, 62, 63].

Our study can be considered as a theoretical and numerical validation of
the DDFV discretisation strategy for the bidomain model. For both a fully
time-implicit scheme and a linearised time-implicit scheme, we prove conver-
gence of different DDFV discretisations to the unique solution of the bidomain
model (1). Then numerical experiments are reported to document some of the
features of the DDFV space discretisations. A rescaled version of model (1),
together with a cubic shape for v 7→ h[v], is used to simulate the propaga-
tion of excitation potential waves in an anisotropic medium. In our tests, we
combine 2D and 3D DDFV schemes for the diffusion terms with fully explicit
discretisation of the ionic current term; thus numerical experiments validate
this scheme, although we were not able to justify its convergence theoreti-
cally. Convergence of the numerical solutions towards the continuous one is
measured in three different ways: the first two ones are aimed at physiologi-
cal applications (convergence for the activation time and for the propagation
velocity), whereas the third one corresponds to the norm used in Theorem 3.
Implementation is detailed. Due to a large number of unknowns and a rel-
atively large stencil of the 3D DDFV schemes, a careful preconditioning is
needed for the bidomain system matrix that has to be inverted at each time
step. The preconditioning strategy we adopted here is developed in [60]: it
provides an almost linear complexity with respect to the matrix size for the
system matrix inversion. The preconditioning combines the idea of hierarchical
matrices decomposition [13, 14] with heuristics referred to as the monodomain
approximation [21].

The remaining part of this paper is organised as follows: In Section 1
we give the definition of a weak solution to (1),(2),(3). Moreover, we recast
the problem into a variational form, from which we deduce an existence and
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uniqueness result. In Section 2 we describe one of the 3D DDFV schemes,
while in Section 3 we formulate two “backward Euler in time” and “DDFV
in space” finite volume schemes, and state the main convergence results. The
proofs of these results are postponed to Section 5; their basis being Section 4,
where we recall some mathematical tools for studying DDFV schemes. Finally,
Section 6 is devoted to numerical examples.

1 Solution framework and well-posedness

We introduce the space

V = closure of the set
{
v ∈ C∞(R3), v|ΓD = 0

}
in the H1(Ω) norm.

In the case ΓD = Ø, we also use the quotient space V0 := V/{v ∈ V, v ≡
Const}. The dual of V is denoted by V ′, with a corresponding duality pairing
〈·, ·〉.

We assume that the Dirichlet data gi,e in (2) are sufficiently regular, so that

gi,e are the traces on (0, T )× ΓD of a couple of L2(0, T ; H1(Ω)) functions

(we keep the same notation for the functions gi,e and their traces). For the
sake of simplicity, we assume that

the Neumann data si,e belong to L2((0, T )× ΓN).

Finally, we require that

the initial function v0 belongs to L2(Ω).

Definition 1. A weak solution to Problem (1),(2),(3) is a triple of functions

(ui, ue, v) : Ω→ R3 s.t. ui,e − gi,e ∈ L2(0, T ;V ), v = ui − ue, v ∈ Lr(Q), (9)

and such that (1),(2),(3) are satisfied in D′([0, T ) × (Ω ∪ ΓN)). In the case
ΓD = Ø, we normalise ue by requiring (4).

Remark 1. It is not difficult to show that Definition 1 is equivalent to a “varia-
tional” formulation of Problem (1),(2),(3), in the spirit of Alt and Luckhaus [1].
Indeed, a triple (ui, ue, v) satisfying (9) is a weak solution of Problem (1),(2),(3)
if and only if (1),(2),(3) are satisfied in the space L2(0, T ;V ′) + Lr

′
(Q). This

means precisely that the distributional derivative ∂tv can be identified with an
element of L2(0, T ;V ′) + Lr

′
(Q), and with this identification there holds

∫ T

0

〈∂tv, ϕ〉+

∫∫

Q

(
Mi(x)∇ui · ∇ϕ+ h(v)ϕ

)
−
∫ T

0

∫

ΓN

si ϕ =

∫∫

Q

Iappϕ,

∫ T

0

〈∂tv, ϕ〉 −
∫∫

Q

(
Me(x)∇ue · ∇ϕ+ h(v)ϕ

)
−
∫ T

0

∫

ΓN

se ϕ =

∫∫

Q

Iappϕ,

(10)
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for all ϕ ∈ L2(0, T ;V ) ∩ Lr(Q), and

∫ T

0

〈∂tv, ϕ〉 = −
∫∫

Q

v ∂tϕ−
∫

Ω

v0(·)ϕ(0, ·)

for all ϕ ∈ L2(0, T, V ) such that ∂tϕ ∈ L∞(Q) and ϕ(T, ·) = 0.

We have the following chain rule:

Lemma 1. Assume that v ∈ L2(0, T ;V ) ∩ Lr(Q) and ∂tv ∈ L2(0, T ;V ′) +
Lr
′
(Q). Then

∫ T

0

〈∂tv , ζ(t)v〉 = −
∫∫

Q

v2

2
∂tζ −

∫

Ω

v2
0

2
ζ(0), ∀ ζ ∈ D([0, T )).

This type of result is well known; for example, it can be proved along the
lines of Alt and Luckhaus [1] and Otto [58] (see also [55] and [16, Theorème
II.5.11]).

The following lemma is a technical tool adapted to the weak formulation
of Definition 1.

Lemma 2. Let Ω be a Lipschitz domain. There exists a family of linear
operators (Rε)ε>0 from L2(0, T, V ) into D(R× Rd) such that
- for all z ∈ L2(0, T, V ), Rε(z) converges to z in L2(0, T, V );
- for all z ∈ Lr(Q) ∩ L2(0, T, V ), Rε(z) converges to z in Lr(Q).

Let us stress that the linearity of Rε(·) is essential for the application of
this lemma. It is used to regularise ui,e, so that one can take Rε(ui,e) as
test functions in (10); for example, a priori estimates for weak solutions and
uniform bounds on their Galerkin approximations will be obtained in this
way. In addition, a straightforward application of the lemma is the following
uniqueness result:

Theorem 1. Assume (6) and (7). Then there exists a unique weak solution
(ui, ue, v) to Problem (1),(2),(3). Moreover, if (ûi, ûe, v̂) is another weak solu-
tion of Problem (1),(2),(3) corresponding to the initial function v̂0 ∈ L2(Ω),
then

for a.e. t ∈ (0, T ), ‖v(t)− v̂(t)‖L2(Ω) ≤ e
√

2Lt‖v0 − v̂0‖L2(Ω).

In addition, if (8) holds then v depends continuously in Lr(Q) on v0 in L2(Ω).

Continuous dependence of the solution on Iapp, si,e, gi,e can be shown
with the same technique, using in addition the Cauchy-Schwarz inequality
on (0, T )× ΓN and the trace inequalities for H1 functions.

Proof. Let ζ ∈ D([0, T )), ζ ≥ 0. We take ζ(t)Rε(ui− ûi)(t, x) as test function
in the first equation of (10), and ζ(t)Rε(ue− ûe)(t, x) in the second equation of
(10). We subtract the resulting equations and apply the chain rule of Lemma 1;
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using the linearity of Rε(·) and the other properties listed in Lemma 2, and
subsequently sending ε→ 0, we finally arrive at

∫∫

Q

−(v − v̂)2

2
∂tζ −

∫

Ω

(v0 − v̂0)2

2
ζ(0) +

∫∫

Q

(
h(v)− h(v̂)

)
(v − v̂)ζ

+

∫∫

Q

(
Mi(x)

(
∇ui −∇ûi

)
· (∇ui −∇ûi)

+ Me(x)
(
∇ue −∇ûe

)
· (∇ue −∇ûe)

)
ζ = 0.

For a.e. t > 0, we let ζ converge to the characteristic function of [0, t]. Thanks
to the monotonicity assumption (7) on h̃, we deduce

∫

Ω

(v − v̂)2(t) ≤
∫

Ω

(v − v̂)2(t) +

∫ t

0

∫

Ω

(
h̃(v)− h̃(v̂)

)
(v − v̂)

≤
∫

Ω

(v0 − v̂0)2 + 2L

∫ t

0

∫

Ω

(v − v̂)2.

By the Gronwall inequality, the L2 continuous dependence property stated in
the theorem follows.

Next, if (8) holds, from the Hölder inequality and the evident estimate

|v − v̂|r ≤ (|v|+ |v̂|)r−2 |v − v̂|2 (recall r ≥ 2),

we infer that ‖v − v̂‖Lr(Q) goes to zero as ‖v0 − v̂0‖L2(Ω) tends to zero.
Finally, if v̂0 ≡ v0, not only do we have v ≡ v̂, but also ûi,e = ui,e because of

the strict positivity of Mi and the boundary/normalisation condition in V .

It remains to prove the regularisation result.

Proof of Lemma 2. For simplicity we consider separately the two basic cases.

• Pure Dirichlet BC case.

Extend z by zero for t /∈ (0, T ). Take a standard family of mollifiers (ρε)ε>0

on Rd+1 supported in the ball of radius ε centred at the origin. Introduce the
set Ωε := {x ∈ Ω | dist (x, ∂Ω) < ε}. Take θε such that θε ∈ D(Ω), θε ≡ 1 in
Ω \ Ωε, 0 ≤ θε ≤ 1, and ‖∇θε‖L∞(Ω) ≤ Const/ε. Define

Rε(z)(t, x) :=
(
ρε(t, x)

)
∗
(
θε(x) z(t, x)

)
.

By construction, Rε maps L1(Q) to C∞(R × Rd). From standard properties
of mollifiers and the absolute continuity of the Lebesgue integral, one easily
deduces that if z ∈ Lr(Q), then zε := Rε(z) converges to z in Lr(Q) as
ε → 0. Next, consider z ∈ L2(0, T ;V ). We have z ∈ L2(Q), and thus zε → z
in L2(Q) as above. In particular, (zε)ε>0 is bounded in L2(Q). Similarly,
ρε ∗ (θε∇z) is bounded in L2(Q) and converges to ∇z ≡ ∇z in L2(Q). Since
∇zε = ρε∗(θε ∇z)+ρε∗(∇θε z), it remains to show that ρε∗(∇θε z) converges
to zero in L2(Q) as ε→ 0. By standard properties of mollifiers, it is sufficient
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to prove that ∇θε z → 0 in L2(Rd) as ε→ 0, which follows from an appropriate
version of the Poincaré inequality.

Indeed, in the case ∂Ω is Lipschitz regular, we can fix ε0 > 0 and cover Ωε0

by a finite number of balls (Oi)i∈I (eventually rotating the coordinate axes in
each ball) such that for all i ∈ I, for all ε < ε0 the set Ωε ∩ Oi is contained
in the strip {Ψi(x2, x3) < x1 < Ψi(x2, x3) +Cε} for some Lipschitz continuous
function Ψi on R2 and some C > 0. Hence by the standard Poincaré inequality
in domains of thickness ε, we have ‖z(t, ·)‖L2(Ωε) ≤ Cε ‖∇z(t, ·)‖L2(Ωε). Then

∫ T

0

∫

Ωε

| ∇θε z|2 ≤
Const

ε2

∫ T

0

∫

Ωε

|z|2 ≤ Const

ε2
Cε2

∫ T

0

∫

Ωε

| ∇z|2,

and the right-hand side converges to zero as ε→ 0, by the absolute continuity
of the Lebesgue integral.

• Pure Neumann BC case.

We use a linear extension operator E from V into H1(Rd) such that V ∩Lr(Ω)
is mapped into H1(Rd)∩Lr(Rd). Such an operator is constructed in a standard
way, using a partition of unity, boundary rectification and reflection (see, e.g.,
Evans [34]). We then define Rε by the formula Rε(z) = ρε ∗ (E(z)).

• The general case: mixed Dirichlet-Neumann BC.

It suffices to define Ωε := {x ∈ Ω | dist (x,ΓD) < ε}, introduce θε as in the
Dirichlet case, introduce E as in the Neumann case, and take Rε(z) = ρε ∗
(θεE(z)).

Remark 2. We have seen that the following space appears naturally:

E :=
{

(ui, ue)
∣∣ ui,e − gi,e ∈ L2(0, T, V ), v := ui − ue ∈ Lr(Q)

}
.

Introducing its dual E ′ and the corresponding duality pairing 〈〈·, ·〉〉; we have

〈〈(χ, ξ) , (ϕ, ψ)〉〉 = lim
ε→0
〈χ,Rεϕ〉+ 〈ξ,Rεϕ〉

whenever the limit exists.
Now, using Remark 1 and Lemma 2, it is not difficult to recast Problem

(1),(2),(3) into the following formal framework:

find (ui, ue) ∈ E such that (∂tv,−∂tv) ∈ E ′ and (1),(2),(3) hold in E ′,

namely, for all (ϕ, ψ) ∈ E,
∫ T

0

〈〈(∂tv,−∂tv) , (ϕ, ψ)〉〉

+

∫∫

Q

(
Mi(x,∇ui) · ∇ϕ−Me(x,∇ue) · ∇ψ + h(v)(ϕ− ψ)

)

−
∫ T

0

∫

ΓN

(
si ϕ− se ψ) =

∫∫

Q

Iapp(ϕ− ψ),

and for all (ϕ, ψ) ∈ E such that ∂tϕ, ∂tψ ∈ L∞(Q) and ϕ(T, ·) = 0 = ψ(T, ·),
∫ T

0

〈〈(∂tv,−∂tv) , (ϕ, ψ)〉〉 = −
∫∫

Q

v ∂t(ϕ− ψ)−
∫

Ω

v0(·) (ϕ(0, ·)− ψ(0, ·)).
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In view of Remarks 1 and 2, we can apply some of the techniques used by
Alt and Luckhaus [1] to deduce an existence result from the uniform bound-
edness in E of the Galerkin approximations of our problem (cf. [15]). The
uniform bound in E is obtained using the chain rule of Lemma 1, the Gronwall
inequality and the assumptions (6),(7) on the ionic current. The arguments
of the existence proof will essentially be reproduced in Section 5; therefore we
omit the details here.

In view of the uniqueness and continuous dependence result of Theorem 1
and its proof, we can end this section by stating a well-posedness result.

Theorem 2. Assume (5), (6) and (7). There exists one and only one solution
to Problem (1),(2),(3). If in addition (8) holds, then the solution depends
continuously in the space E on the initial datum in L2(Ω).

2 The framework of DDFV schemes

We make an idealisation of the heart by assuming that it occupies a polyhedral
domain Ω of R3. We discretise the diffusion terms in (1) using the implicit
Euler scheme in time and the so-called Discrete Duality Finite Volume (DDFV)
schemes in space. The DDFV schemes were introduced for the discretisation
of linear diffusion problems on 2D unstructured, non-orthogonal meshes by
Hermeline [42, 43] and by Domelevo and Omnès [33]. They turned out to
be well suited for approximation of anisotropic and heterogeneous linear or
non-linear diffusion problems.

Our application requires a 3D analogue of the 2D DDFV schemes. Three
versions of such 3D DDFV schemes have already been developed; we shall refer
to them as (A), (B) and (C). We refer to [59, 31] for version (A); version (B)
that we describe in Section 2.2 below was developed independently in [46] and
[4, 5, 2]; we refer to [24, 25] for version (C)1.

In this paper, we prove the convergence of each of these schemes, using only
general properties of DDFV approximations; but the main focus is on scheme
(B), which construction is detailed. Two remarks are of order.

Firstly, during the work on this paper we found out that constructions (A)
and (B), although they use different dual meshes, actually lead to the same
discrete gradient reconstruction (see [28]). Moreover, they lead to the same
stiffness and mass matrices, provided the discretization of data, sources, and
coefficients is made by one-point quadratures (this is the case of our numerical
study in Section 6). Thus, the distinction between (A) and (B) is rather of
historical nature. The construction (C) is different, although (A)-(B) and (C)
can be related in the case of primal meshes with quadrangular faces.

Secondly, while the theoretical study of the three strategies is similar, data
structures for implementation are quite different. In the present paper, the nu-

1According to the location of unknowns with respect to the primal mesh, one can identify
the methods (A) and (B) as CV-DDFV (cell and vertex unknowns); and the method (C) as
CeVeFE-DDFV (cell, vertex and face+edge unknowns).
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merical study only concerns the method (B). Extensive numerical comparisons
between the different DDFV methods, and other methods designed to resolve
the same difficulties, are addressed by the benchmark on linear anisotropic
heterogeneous diffusion problems in 3D, see [37] (cf. [40] for the analogous
benchmark in 2D); the methods (A), (B), and (C) are presented in the works
[28], [9], and [26], respectively.

2.1 Generalities

In the 3D DDFV approach of [59, 31] (version (A)) and in the one of [4, 5, 2],
[46] (version (B)), the meshes consist of control volumes of two kinds, the
primal and the dual ones. Version (C) also includes a third mesh. In case
(A), the primal volumes form a partition of Ω, and the dual volumes cover
Ω twice, up to a set of measure zero. For case (B), primal volumes and dual
volumes form two partitions of Ω, up to a set of measure zero. For case (C),
each of the three families of volumes recovers the domain. Some of the dual
and primal volumes are considered as “Dirichlet boundary” volumes, while the
others are the “interior” volumes (this includes the volumes located near the
Neumann part ΓN of ∂Ω). With each (primal or dual) interior control volume
we associate unknown values for ui, ue, v; Dirichlet boundary conditions are
imposed on the boundary volumes. The Neumann boundary conditions will
enter the definition of the discrete divergence operator near the boundary; it
is convenient to take them into account by introducing additional unknowns
associated with “degenerated primal volumes” that are parts of the Neumann
boundary ΓN .

We consider the space RT of discrete functions on Ω; a discrete function
uT ∈ RT consists of one real value per interior control volume. On RT an

appropriate inner product
[[
·, ·
]]

Ω
is introduced, which is a bilinear positive

form.

Both primal and dual volumes define a partition of Ω into diamonds, used to
represent discrete gradients and other discrete fields on Ω. The space (RD)3 of
discrete fields on Ω serves to define the fluxes through the boundaries of control
volumes. A discrete field ~MT ∈ (RD)3 on Ω consists of one R3-valued vector

per “interior” diamond. On (RD)3 an appropriate inner product
{{
·, ·,
}}

Ω
is

introduced.

A discrete duality finite volume scheme is determined by the mesh, the
discrete divergence operator divT

sT : (RD)3 −→ RT obtained by the standard
finite volume discretisation procedure (with values sT given by the Neumann
boundary condition on ΓN), and by the associated discrete gradient operator.
More precisely, the discrete gradient operator ∇T

gT : RT −→ (RD)3 is defined
on the space of discrete functions extended by values gT in volumes adjacent
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to ΓD; it is defined in such a way that the discrete duality property holds:

∀ v ∈ RT, ∀ ~MT ∈ (RD)3,
[[
−divT

sT
~MT, vT

]]
Ω

=
{{
~MT, ∇T

0v
T

}}
Ω

+
〈〈
sT, v∂T

〉〉
ΓN

.

(11)
Here ∇T

0 corresponds to the homogeneous Dirichlet boundary condition2 gT =

0 on ΓD, and sT denotes the discrete Neumann boundary datum for ~MT · n.

Further,
〈〈
·, ·
〉〉

ΓN

denotes an appropriately defined product on the Neumann

part ΓN of the boundary ∂Ω, and v∂T denotes the boundary values on ΓN of
vT. The precise definitions of these objects are given below for version (B).

In [59, 31] and [4, 5, 2],[46], the definitions of dual volumes and
[[
·, ·
]]

Ω
differ; but both methods can be analysed with the same formalism. The con-
struction in [24, 25] only differs by its use of three meshes based on three kinds

of control volumes. This also changes the definition of
[[
·, ·
]]

Ω
. The main

difference between the three frameworks lies in the interpretation of uT ∈ RT

in terms of functions. In each case uT ∈ RT is thought as a piecewise con-
stant function. The three following lifting formulas between RT and L1(Ω) are
considered:

uT :=





1

3
vMo

+
1

3
vM∗ for version (A) described in [59, 31]

1

3
vMo

+
2

3
vM∗ for version (B) described in [4, 5, 2], [46]

1

3
vMo

+
1

3
vM∗+

1

3
vM� for version (C) described in [24, 25],

(12)
with vMo

and vM∗ representing the discrete solutions on the primal and the dual
mesh, respectively, and with vM� (in the scheme of [24, 25]) representing the
solution on the third mesh. We have for instance vMo

(x) =
∑

K∈Mo vK 1lK(x)
(with 1lK the characteristic function of K), the definitions ofvM∗ , vM� are anal-
ogous.

The coefficients in (12) are related to the structure of the meshes (in par-
ticular, recall that in the case (A), the dual mesh covers the domain twice). In
all the three cases, appropriate definitions of the spaces RT, (RD)3, the scalar

products
[[
·, ·
]]

Ω
(this involves the same weights as in (12)),

{{
·, ·
}}

Ω
,
〈〈
·, ·
〉〉

ΓN

,

and of the operators divT, ∇T, lead to the discrete duality property (11).

2.2 A description of version (B)

In this subsection we describe the objects and the associated discrete gradient
and divergence operators for version (B) of the scheme. More details and
generalisations can be found in [2].

2our notation follows [7]; a slightly different viewpoint was used in [4, 5, 2, 3], where the
homogeneous Dirichlet boundary data were included into the definition of the space RT

0 of
discrete functions defined also on the control volumes adjacent to ΓD ≡ ∂Ω.
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2.2.1 Construction of “double” meshes

• A partition of Ω is a finite set of disjoint open polyhedra such that Ω is equal
to their union, up to a set of zero three-dimensional measure.

A “double” finite volume mesh of Ω is a triple T =
(
Mo,M∗,D

)
described

in what follows.

• First, let Mo
Ω be a partition of Ω into open polyhedra with triangular or

quadrangular faces. We assume the polyhedra convex. Assume that ∂Ω is
the disjoint union of polygonal parts ΓD (for the sake of being definite, we
assume it to be closed) and ΓN (that we therefore assume to be open). Then
we require that each face of the polyhedra in Mo

Ω either lies inside Ω, or it lies
on ΓD, or it lies on ΓN (up to a set of zero two-dimensional measure). Each
K ∈Mo

Ω is called a primal control volume and is supplied with an arbitrarily
chosen centre xK; for simplicity, we assume xK ∈ K; e.g. the barycenter is a
standard choice. The vertices of the primal mesh are called primal vertices.

Further, we call Mo
ΓN

(respectively, ∂Mo) the set of all faces of control
volumes that are included in ΓN (resp., in ΓD). These faces are considered as
degenerate control volumes; those of ∂Mo are called boundary primal volumes.
For K ∈Mo

ΓN
or K ∈ ∂Mo, we arbitrarily choose a centre xK ∈ K; again, the

barycenter is often chosen (cf. [46]).
Finally, we denote Mo := Mo

Ω ∪Mo
ΓN

; Mo is the set of interior primal

volumes; and we denote by Mo the union Mo ∪ ∂Mo ≡
(
Mo

Ω ∪Mo
ΓN

)
∪ ∂Mo.

•We call neighbours of K, all control volumes L ∈Mo such that K and L have a
common face (by convention, a degenerate volume K ∈Mo

ΓN
or K ∈ ∂Mo has

a unique face, which coincides with the degenerate volume itself). The set of
all neighbours of K is denoted by N(K). Note that if L ∈ N(K), then K ∈ N(L);
in this case we simply say that K and L are (a couple of) neighbours. If K,L
are neighbours, we denote by K|L the interface (face) ∂K∩∂L between K and L.

•We call vertex (of Mo
Ω) any vertex of any control volume K ∈Mo

Ω. A generic
vertex of Mo

Ω is denoted by xK∗ ; it will be associated later with a unique dual
control volume K∗ ∈ M∗. Each face K|L is supplied with a face centre xK|L

which should lie in K|L (the more general situation is described in [2]). For two
neighbour vertices xK∗ and xL∗ (i.e., vertices of Mo joined by an edge of some
interface K|L or boundary face), we denote by xK∗|L∗ the middle-point of the
segment [xK∗ , xL∗ ].

• Now if K ∈Mo and L ∈ N(K), assume xK∗ , xL∗ are two neighbour vertices of
the interface K|L. We denote by T

K,K|L
K∗,K∗|L∗ the tetrahedra formed by the points

xK, xK∗ , xK|L, xK∗|L∗ . A generic tetrahedron T
K,K|L
K∗,K∗|L∗ is called an element of the

mesh and is denoted by T (see Figure 1); the set of all elements is denoted by
T .

• Define the volume K∗ associated with a vertex xK∗ of Mo
Ω as the union of

all elements T ∈ T having xK∗ for one of its vertices. The collection M∗ of
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xK
T

K,K|L
K∗,K∗|L∗

element

xK∗|L∗

xL∗

xK∗

xL

xK|L

Figure 1: One of the twelve elements in diamond D
K|L with trian-

gular base K|L

all such K∗ forms another partition of Ω. If xK∗ ∈ Ω ∪ ΓN , we say that K∗

is an (interior) dual control volume and write K∗ ∈M∗; and if xK∗ ∈ ΓD, we
say that K∗ is a boundary dual control volume and write K∗ ∈ ∂M∗. Thus
M∗ = M∗ ∪ ∂M∗. Any vertex of any dual control volume K∗ ∈M∗ is called
a dual vertex (of M∗). Note that by construction, the set of vertices coincides
with the set of dual centres xK∗ ; the set of dual vertices consists of centres
xK, face centres xK|L and edge centres (middle points) xK∗|L∗ . Picturing dual
volumes in 3D is a hard task; cf. [59] for version (A) and [24, 25] for version
(C).

• We denote by N∗(K∗) the set of (dual) neighbours of a dual control volume
K∗, and by K∗|L∗, the (dual) interface ∂K∗ ∩ ∂L∗ between dual neighbours K∗

and L∗.

• Finally, we introduce the partitions of Ω into diamonds and subdiamonds.
If K, L ∈Mo are neighbours, let HK be the convex hull of xK and K|L and HL

be the convex hull of xL and K|L. Then the union HK ∪HL is called a diamond
and is denoted by D

K|L.
If K, L ∈Mo are neighbours, and xK∗ , xL∗ are neighbour vertices of the cor-

responding interface K|L, then the union of the four elements T
K,K|L
K∗,K∗|L∗ , T

K,K|L
L∗,K∗|L∗ ,

T
L,K|L
K∗,K∗|L∗ , and T

L,K|L
L∗,K∗|L∗ is called subdiamond and denoted by S

K|L
K∗|L∗ . In this way,

each diamond D
K|L gives rise to l subdiamonds (where l is the number of ver-

tices of K|L); cf. the next item and Fig. 2. Each subdiamond is associated with
a unique interface K|L, and thus with a unique diamond D

K|L. We will write
S ⊂ D to signify that S is associated with D.

We denote by D,S the sets of all diamonds and the set of all subdiamonds,
respectively. Generic elements of D,S are denoted by D,S, respectively. Notice
that D is a partition of a subdomain of Ω (only a small neighbourhood of ΓN
in Ω is not covered by diamonds).

• (See Figure 2) The following notations are only needed for an explicit expres-
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xK⊕

xK⊕

xK⊕

volume
K"

xK∗
3|K

∗
1

K"|K⊕

xK"

xK"

xK∗
3|K

∗
1

xK"

xK∗
3

xK∗
3|K

∗
1

xK∗
1

xK∗
1

xK∗
3

xK"|K⊕

xK∗
1

volume

xK"|K⊕

orientation

xK"|K⊕

xK∗
2

interface

xK∗
3

xK∗
2

K⊕

diamond

DK"|K⊕

subdiamond

S
K"|K⊕
K∗
3|K

∗
1

x⊕

x∗
3

x∗
1

x∗
2

subdiamond

−−−→
x∗
3
x∗
1

x"

−−−→
x∗

",⊕x
∗
3,1

x∗
3,1

S
K"|K⊕
K∗
3|K∗

1

Simplified notation
in a diamond

!e",⊕

!n",⊕

x∗
",⊕

Figure 2. Primal volumes, diamond; subdiamond and zoomon it
(Version (B) of 3D DDFV mesh)

To simplify the notation, we will drop the K’s in the subscripts and denote the
objects introduced above by x",x⊕,!e",⊕,d",⊕,!n",⊕ and by x∗

i ,!e
∗

i,i+1,d
∗
i,i+1 whenever

D
K"|K⊕ is fixed. We also denote by x∗

i,i+1
the middle-point xK∗

i|K∗
i+1

of the segment

[xi, xi+1], and by x∗
",⊕, the centre xK"|K⊕ of K"|K⊕.

• For a diamond D = D
K"|K⊕ , we denote by ProjD the orthogonal projection of

R3 onto the line spanned by the vector !eK",K⊕ ; we denote by Proj∗
D

the orthogonal

projection of R3 onto the plane containing the interface K"|K⊕.

• We denote by Vol(A) the three-dimensional Lebesgue measure of A which can
stand for a control volume, a dual control volume, or a diamond. In particular, for
K ∈ Mo

ΓN
, Vol(K) = 0: these volumes are degenerate. For a subdiamond S = S

K"|K⊕
K∗

i|K∗
i+1

,

we have the formula Vol(S) = 1
6 〈−−→x"x⊕,

−−−−−→
x∗

",⊕x∗
i,i+1

,
−−−−→
x∗

i x
∗
i+1 〉. Note the mixed product

is positive, thanks to our conventions on the orientation in D
K"|K⊕ and because we

have assumed that x∗
",⊕ ∈ K"|K⊕.

Remark 3.1. Diamonds permit to define the discrete gradient operator, while
subdiamonds permit to give formulas for the discrete divergence operator (see (13),
(14) and (17), (21) below, respectively).

In the context of 2D “double” schemes, introducing diamonds is quite standard
(see, e.g., [6, 26]). Subdiamonds are “hidden” in the 2D construction : they actually
coincide with diamonds.

3.2.2. Discrete functions, fields, and boundary data.

• A discrete function wT on Ω is a pair
(
wMo

, wM∗)
consisting of two sets of real

values wMo
= (wK)K∈Mo and wM∗

= (wK∗)K∗∈M∗ . The set of all such functions is
denoted by RT.

• A discrete field !MT on Ω is a set
(
!FD

)
D∈D

of vectors of Rd. The set of all discrete

fields is denoted by (Rd)D. If !MT is a discrete field on Ω, we assign !MS = !MD

whenever S ⊂ D.

• A discrete Dirichlet datum gT on ΓD is a pair
(
g∂Mo

, g∂M∗)
consisting of two sets

of real values g∂Mo
= (gK)K∈∂Mo and g∂M∗

= (gK∗)K∗∈∂M∗ . In practise, gK (resp.,
gK∗) can be obtained by averaging the “continuous” Dirichlet datum g over the
boundary volume K ⊂ ΓD (resp., over the part of ΓD adjacent to the boundary

Figure 2: Primal volumes, diamond; subdiamond and zoom on it (Ver-
sion (B) of 3D DDFV mesh)

sion of the discrete divergence operator (and also for the proof of the discrete
duality given in [2]). It is convenient to orient the axis xKxL of each diamond
D. Whenever the orientation is of importance, the primal vertices defining the
diamond will be denoted by xK� , xK⊕ in such a way that the vector −−−−→xK�xK⊕

has the positive orientation. The oriented diamond is then denoted by D
K�|K⊕ .

We denote by ~eK�,K⊕ the corresponding unit vector, and by dK�,K⊕ , the length
of −−−−→xK�xK⊕ . We denote by ~nK�|K⊕ the unit normal vector to K�|K⊕ such that
~nK�|K⊕ · ~eK�,K⊕ > 0.

Fixing the normal ~nK�|K⊕ of K�|K⊕ induces an orientation of the correspond-
ing face K�|K⊕, which is a convex polygon with l vertices (we only use l = 3 or
4): we denote the vertices of K�|K⊕ by xK∗i

, i ∈ [[1, l]], enumerated in the direct
sense. By convention, we assign xK∗l+1

:= xK∗1
. We denote by ~eK∗i ,K∗i+1

the unit
normal vector pointing from xK∗i

towards xK∗i+1
, and by dK∗i ,K

∗
i+1

, the length of
−−−−−→xK∗i

xK∗i+1
.

To simplify the notation, we will drop the K’s in the subscripts and de-
note the objects introduced above by x�,x⊕,~e�,⊕,d�,⊕,~n�,⊕ and by x∗i ,~e

∗
i,i+1,d∗i,i+1

whenever D
K�|K⊕ is fixed. We also denote by x∗i,i+1 the middle-point xK∗i|K

∗
i+1

of
the segment [xi, xi+1], and by x∗�,⊕, the centre xK�|K⊕ of K�|K⊕.

• For a diamond D = D
K�|K⊕ , we denote by ProjD the orthogonal projection

of R3 onto the line spanned by the vector ~eK�,K⊕ ; we denote by Proj∗D the
orthogonal projection of R3 onto the plane containing the interface K�|K⊕.

•We denote by Vol(A) the three-dimensional Lebesgue measure of A which can
stand for a control volume, a dual control volume, or a diamond. In particular,
for K ∈Mo

ΓN
, Vol(K) = 0: these volumes are degenerate. For a subdiamond

S = S
K�|K⊕
K∗i|K
∗
i+1

, we have the formula Vol(S) = 1
6
〈−−→x�x⊕,

−−−−→
x∗�,⊕x

∗
i,i+1,
−−−→
x∗ix

∗
i+1 〉. Note the

mixed product is positive, thanks to our conventions on the orientation in
D

K�|K⊕ and because we have assumed that x∗�,⊕ ∈ K�|K⊕.
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Remark 3. Diamonds permit to define the discrete gradient operator, while
subdiamonds permit to give formulas for the discrete divergence operator (see
(13), (14) and (17), (21) below, respectively).

In the context of 2D “double” schemes, introducing diamonds is quite
standard (see, e.g., [7, 33]). Subdiamonds are “hidden” in the 2D construction
: they actually coincide with diamonds.

2.2.2 Discrete functions, fields, and boundary data.

• A discrete function wT on Ω is a pair
(
wMo

, wM∗
)

consisting of two sets of real
values wMo

= (wK)K∈Mo and wM∗ = (wK∗)K∗∈M∗ . The set of all such functions
is denoted by RT.

• A discrete field ~MT on Ω is a set
(
~FD

)
D∈D of vectors of Rd. The set of all

discrete fields is denoted by (Rd)D. If ~MT is a discrete field on Ω, we assign
~MS = ~MD whenever S ⊂ D.

• A discrete Dirichlet datum gT on ΓD is a pair
(
g∂Mo

, g∂M∗
)

consisting of two
sets of real values g∂Mo

= (gK)K∈∂Mo and g∂M∗ = (gK∗)K∗∈∂M∗ . In practice, gK
(resp., gK∗) can be obtained by averaging the “continuous” Dirichlet datum g
over the boundary volume K ⊂ ΓD (resp., over the part of ΓD adjacent to the
boundary dual volume K∗); if g is continuous, the mean value can be replaced
by the value of g at xK (resp., at xK∗). We refer to [7] for details.

• A discrete Neumann datum sT on ΓN is a set of real values (sK)K∈Mo
ΓN

.

In practice, sK can be obtained by averaging the “continuous” Neumann
datum s over the degenerate volume K ⊂ ΓN . In the case ΓD = Ø, one should
be careful while using approximate quadratures to produce sT from s. Indeed,
some compatibility conditions between Neumann data and source terms may
arise while discretising elliptic equations (this is the case of system (1), because
the difference of the two equations of the system is an elliptic equation, and the
compatibility condition (5) is needed for the solvability of the system). The
compatibility condition, expressed in terms of

∫
ΓN
si,e, should be preserved at

the discrete level. This is the case for the above choice of sT: indeed, we have
the equality

∫
ΓN
s =

∫
ΓN
sT.

2.2.3 The discrete gradient operator

• On the set RT of discrete functions wT on Ω, we define the discrete gradient
operator ∇T

gT [·] with Dirichlet data gT on ΓD:

∇T

gT : wT ∈ RT 7→ ∇T

gTw
T =

(
∇Dw

T
)
D∈D ∈ (Rd)D, (13)
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where the entry ∇Dw
T of the discrete field ∇TwT relative to D = D

K�|K⊕ is

∇Dw
T is s.t.





ProjD(∇Dw
T) =

w⊕ − w�
d�,⊕

~e�,⊕,

Proj∗D(∇Dw
T) = ∇F (·),

(14)

where

· F (·) is the affine function from R3 to R that is constant in the direction
~n�,⊕ orthogonal to K|L and that is the ad hoc affine interpolation (namely,
(15) below) of the values w∗i at the vertices x∗i , i = 1, . . . , l, of K|L;

· for the vertices of D lying in Ω∪ ΓN , w�=wK� , w⊕=wK⊕ , w∗i = wK∗i
, etc.

(we use the simplified notation in the diamond D = D
K�|K⊕ , as depicted

in Figure 2). For the vertices of D that lie in ΓD, the values of gT are
used: e.g., if xK� ∈ ΓD, then we set w� := gK� in the above formula.

Clearly, if l = 3 there is a unique consistent interpolation of the values
w1, w2, w3. For l ≥ 4, no consistent interpolation exists, and we choose the
linear form in w∗i that leads to the expression

Proj∗D(∇Dw
T)=

2
∑l

i=1 〈~n�,⊕,
−−−−→
x∗�,⊕x

∗
i,i+1,
−−−→
x∗ix

∗
i+1 〉

l∑

i=1

(w∗i+1 − w∗i )
[
~n�,⊕ ×

−−−−→
x∗�,⊕x

∗
i,i+1

]
.

(15)

Here the notation 〈~a,~b,~c〉 = ~a ·~b×~c stands for the mixed product on R3. It is
shown in [2] that the choice (15) is exact on affine functions, and that it leads
to the discrete duality formula. For an explicit formula of ∇Dw

T, note that
~p = ProjD(∇Dw

T), ~p∗ = Proj∗D(∇Dw
T) are given; then one expresses ∇Dw

T as

∇Dw
T =

1

Vol(D)

l∑

i=1

{Vol(S
K�|K⊕
K∗i|K
∗
i+1

)
−−→x�x⊕ · ~n�,⊕

(w⊕−w�)~n�,⊕+
1

3
(w∗i+1−w∗i )

[−−→x�x⊕×
−−−−→
x∗�,⊕x

∗
i,i+1

]}

(16)

Remark 4. In (14), the primal mesh Mo serves to reconstruct one component
of the gradient, which is the one in the direction ~e�,⊕. The dual mesh M∗ serves
to reconstruct, with the help of the formula (15), the two other components,
which are those lying in the plane containing K�|K⊕. The same happens for
version (A) of the scheme. On the contrary, version (C) only reconstructs one
direction of the discrete gradient on the mesh M∗, while the third direction is
reconstructed on a third mesh that we denote by M�.

Remark 5. We stress that our gradient approximation is consistent (see
[2] for the proof). Indeed, let w�, w⊕, (w

∗
i,i+1)li=1 be the values at the points

x�, x⊕, (x
∗
i,i+1)

l
i=1, respectively, of an affine on D = D

K�|K⊕ function w. Then
∇Dw

T coincides with the value of ∇w on D.
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2.2.4 The discrete divergence operator

• On the set (Rd)D of discrete fields ~MT, we define the discrete divergence
operator divT

sT [·] with Neumann data sT on ΓN :

divT

sT : ~MT ∈ (Rd)D 7→ divT

sT
~MT

=
( (

divK
~MT
)
K∈Mo=Mo

Ω∪Mo
ΓN

,
(
divK∗

~MT
)
K∗∈M∗

)
∈ RT,

(17)

where the entries divK
~MT (for K ∈Mo

Ω) and divK∗
~MT of the discrete function

divT ~MT on Ω are given by

∀K ∈Mo
Ω, divK

~MT =
1

Vol(K)

∑

D∈D: D∩K 6=Ø

∫

∂K∩D

~MD · nK,

∀K∗ ∈M∗, divK∗
~MT =

1

Vol(K∗)

∑

D∈D: D∩K∗ 6=Ø

∫

∂K∗∩D

~MD · nK∗ ,
(18)

where nK (resp., nK∗) denotes the exterior unit normal vector to K (resp., to
K∗). Further, for K ∈Mo

ΓN
, we mean that nK points inside Ω, and we adapt

the following formal definition:

∀K ∈Mo
ΓN
, Vol(K)divK

~MT := ~MD · nK + sK
for the diamond D such that D ∩ ΓN = K;

(19)

thus, although Vol(K) is zero, in calculations we only use the products Vol(K)divK
~MT,

which are well defined thanks to convention (19). In practice, the discrete
equations corresponding to volumes of Mo

ΓN
will always read as

~MD · nK + sK = 0, K ∈Mo
ΓN
. (20)

Notice that the values of the Neumann data sT only appear in the convention
(19) for the degenerate primal volumes K ⊂ ΓN ; at the same time, in the vol-
umes K∗ adjacent to ΓN the data sT are taken into account indirectly. Namely,
let K∗ be a dual volume adjacent to ΓN , and let D be a diamond intersecting K∗

and adjacent to ΓN ; then the valueMD ·nK used for the definition of divK∗
~MT

is linked to the data sT via equations (20).

The formulas (18) are standard for divergence discretisation in finite volume
methods; their interpretation is straightforward, using the Green-Gauss theo-
rem. The consistency of the discrete divergence operator (in the weak sense)
can be inferred by duality from the one of the discrete gradient operator (Re-
mark 5) and from the discrete duality property (11); see Proposition 2(iii) and
[3].

For the explicit calculation of the right-hand sides in (18), one can further
split diamonds into subdiamonds. In a generic subdiamond, we use the follow-
ing notation. Consider S ∈S; it is associated with a unique oriented diamond
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which we denote D
K�|K⊕ , so that S is of the form S = S

K�|K⊕
K∗i|K
∗
i+1

. In order to cope

with the vector orientation issues, given S = S
K�|K⊕
K∗i|K
∗
i+1

we define

εKS :=

{
0, if K = K�

1, if K = K⊕

, εK
∗

S :=

{
0, if K∗ = K

∗
i

1, if K∗ = K
∗
i+1

.

For K ∈Mo, we denote by V(K) the set of all subdiamonds S ∈ S such that
K ∩ S 6= Ø. In the same way, for K∗ ∈ M∗ we define the set V∗(K∗) of the
subdiamonds intersecting K∗. Then, using the notation 〈·, ·, ·〉 for the mixed
product on R3, we can express formulae (18) as

∀K ∈Mo
Ω divK

~MT =
1

2Vol(K)

∑

S∈V(K)

(−1)ε
K
S 〈 ~MS,

−−−−→
x∗�,⊕x

∗
i,i+1,
−−−→
x∗ix

∗
i+1, 〉

∀K∗ ∈M∗ divK∗
~MT =

1

2Vol(K∗)

∑

S∈V∗(K∗)

(−1)ε
K∗
S 〈 ~MS,

−−→x�x⊕,
−−−−→
x∗�,⊕x

∗
i,i+1 〉.

(21)

In (21), each subdiamond S in V(K) (or in V∗(K∗)) has the form S = S
K�|K⊕
K∗i|K
∗
i+1

,

with some K�,K⊕,K
∗
i ,K

∗
i+1; the notations εKS , ε

K∗
S , x�, x⊕, x

∗
�,⊕, x

∗
i,i+1, x

∗
i , x
∗
i+1 refer to

S = S
K�|K⊕
K∗i|K
∗
i+1

(see Figure 2). Each term in the sums (21) corresponds to the flux

of M through a triangular face contained within the subdiamond S. Details
can be found in [2].

Remark 6. In practice it is not necessary to calculate the discrete divergence;
indeed, with the help of the duality property, one can express the discrete
system of equations in the dual form, where the calculation of the discrete
divergence of the solution is replaced by the calculation of the discrete gradient
of a test function. It is interesting to put this constatation into perspective
with the Mimetic Finite Differences scheme for diffusion problems as defined in
[18]. In this paper a standard finite volume divergence operator is defined and
the definition of a gradient operator is replaced by a dual property (of discrete
Green Gauss formula type) together with the definition of a consistent scalar
product. As a result, the gradient operator is neither defined explicitly nor
calculated in practice. The situation is therefore somehow opposite with the
one for DDFV schemes. A major difference is that, although the discrete
divergence need not be computed in practice, it however has a simple and
natural definition (it is a flux balance as usual for finite volume schemes),
whereas in the case of Mimetic schemes only a dual and abstract definition of
the gradient is provided.

2.2.5 The scalar products
[[
·, ·
]]

Ω
,
{{
·, ·
}}

Ω
,
〈〈
·, ·
〉〉

ΓN

and discrete du-

ality
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• Recall that RT is the space of all discrete functions on Ω. For wT, vT ∈ RT,
set [[

wT, vT

]]
=

1

3

∑

K∈Mo

Vol(K) wKvK +
2

3

∑

K∗∈M∗
Vol(K∗) wK∗vK∗ .

Recall that (R3)D is the space of discrete fields on Ω. For ~MT, ~GT ∈ (R3)D,
set {{

~MT, ~GT

}}
=
∑

D∈D

Vol(D) ~MD · ~GD.

• Recall that in (12), for version (B) of the scheme, given a discrete function
vT, we set

vT(x) =
1

3

∑

K∈Mo

vK1lK(x) +
2

3

∑

K∗∈M∗
vK∗1lK∗(x).

Then the function v∂T ∈ L∞(ΓN) can be defined as the trace of vT on ΓN . This
means, v∂T(x) := 1

3
vK + 2

3
vK∗ where for H2-a.e x ∈ ΓN , K and K∗ are uniquely

defined by the fact that x ∈ K ∩ K∗.

• Finally, for
〈〈
·, ·
〉〉

ΓN

, we simply use the L2 scalar product on ΓN .

Now a straightforward adaptation of the proof of the discrete duality prop-
erty in [2] yields the desired discrete duality property (11).

3 The DDFV schemes and convergence results

The time-implicit DDFV finite volume schemes for Problem (1),(2),(3) can be
formally (up to convention (19)) written under the following general form:





find
(

(uT,n
i , uT,n

e , vT,n)
)
n=1,...,N

⊂ (RT)3 satisfying the equations

vT,n+1 − vT,n

∆t
− div T

sT,n+1
i

[MT

i ∇T

gT,n+1
i

uT,n+1
i ] + hT,n+1 − IT,n+1

app = 0,

vT,n+1 − vT,n

∆t
+ div T

sT,n+1
e

[MT

e ∇T

gT,n+1
e

uT,n+1
e ] + hT,n+1 − IT,n+1

app = 0,

vT,n+1 − (uT,n+1
i − uT,n+1

e ) = 0,

(22)

vT,0 = vT

0 . (23)

For two rigorous interpretations of (22), see Definition 2 below.
We normalise uT,n+1

e by requiring, for all n = 1, . . . , N ,

if ΓD = Ø, then
∑

K∈Mo
Ω

Vol(K)ue,K =0,

∑

K∗∈M∗
Vol(K∗)ue,K∗=0,

∑

K�∈M�
Vol(K�)ue,K�=0

(24)
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(the last condition is only meaningful for the scheme (C) using the third mesh
M�).

The triple (uT,n+1
i , uT,n+1

e , vT,n+1) constitutes the unknown discrete func-
tions at time level n; vT

0 and IT,n+1
app stand for the projections of the initial

datum v0 and the source term Iapp on the space of discrete functions. Simi-
larly, gT,n+1

i,e ,sT,n+1
i,e are suitable projections of the Dirichlet and Neumann data

gi,e, si,e, respectively. Notice that the boundary data are taken into account in
the definition of the discrete operators ∇T

gT , div T

sT . The matrices MT
i,e(·) are

the projections of Mi,e(·) on the diamond mesh. We will mainly work with the
mean-value projections; e.g., the projection PT on T of v0 would be the discrete

function with the entry 1
Vol(K)

∫

K

v0 corresponding to a control volume K. For

regular functions, the centre-valued projection PT
c can be considered, where

the entry v0(xK) corresponds to a volume K. We refer to Sections 2.2.2, 4.2
for details on the projection operators in use.

A relation that links hT,n+1 to vT,n+1 closes the scheme; we consider the
following two choices: the fully implicit scheme,

hT,n+1 = PTh(vT,n+1(·)), (25)

and the linearised implicit scheme

hT,n+1 = PT

(
(b̃(vT,n(·))− L) vT,n+1(·)− l

)
. (26)

where PT is the projection operator acting from L1(Ω) into the space of the cor-
responding discrete functions; further, vT,n+1(·) define the piecewise constant
functions reconstructed according to (12) from the values vT,n+1 =

(
vMo,n+1, vM∗,n+1

)

(for versions (A) and (B)) or vT,n+1 =
(
vMo,n+1, vM∗,n+1, vM�,n+1

)
(for version

(C)). The same convention applies to vT,n(·). We refer to Section 4.7 for a
detailed description of such discretisation of the ionic current term.

Remark 7. In the discretisation of the ionic current term h(v), the choices
(25) and (26) are made to reconstruct the L1 function vT(·) and then to re-
project it on the mesh T. This is tricky and it may seem unnatural. But
we explain in Section 4.7 that this is the way to ensure that the structure of
the reaction terms in the discrete equations yields exactly the same a priori
estimates as for the continuous problem.

The seemingly simpler choice hT,n+1 = h(vT,n+1) (instead of (25)) does not
have good structure properties; we can justify the convergence of the associated
scheme by adding a penalisation term (cf. [5]) whose role is to make small the
differences vn+1

K − vn+1
K∗ , for K ∩ K∗ 6= Ø, in the left-hand side of the scheme

(22).

Definition 2. A discrete solution is a set
(

(uT,n+1
i , uT,n+1

e , vT,n+1)
)
n∈[0,N ]

(in

the sequel, we denote it by (uT,∆t
i , uT,∆t

e , vT,∆t)) satisfying the initial data (23),
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the normalisation equations (24), and the closure relation (25) or (26); more-
over, it should solve system (22) in the following sense:

· equalities in (22) hold component per component for all entries correspond-
ing to primal volumes K ∈Mo

Ω and those corresponding to the dual volumes
K∗ ∈M∗;

· for the entries corresponding to K ∈Mo
ΓN

, convention (19) is used, that is,

the equations take the form vT,n+1 − (uT,n+1
i − uT,n+1

e ) = 0 and

(Mi,e)D∇Du
T,n+1 · nK + (si,e)

n+1
K = 0 for D ∈D such that D ∩ ΓN = K;

Equivalently, (uT,∆t
i , uT,∆t

e , vT,∆t) is a discrete solution if vT,∆t = uT,∆t
i −uT,∆t

e

and for all ϕT ∈ RT, for all n ∈ [0, N ] the following identities hold:





1

∆t

[[
vT,n+1 − vT,n, ϕT

]]
Ω

+
{{

MT

i ∇T

gT,n+1
i

uT,n+1
i , ∇T

0ϕ
T

}}
Ω

+
〈〈
sTi , ϕ

∂T
〉〉

ΓN

+
[[
hT,n+1 − IT,n+1

app , ϕT

]]
Ω

= 0,

1

∆t

[[
vT,n+1 − vT,n, ϕT

]]
Ω
−
{{

MT

i ∇T

gT,n+1
e

uT,n+1
e , ∇T

0ϕ
T

}}
Ω

−
〈〈
sTe , ϕ

∂T
〉〉

ΓN

+
[[
hT,n+1 − IT,n+1

app , ϕT

]]
Ω

= 0.

(27)

Notice that the equivalence of the formulations (22) and (27) is easy to
establish; namely, the discrete duality property (11) is used together with the
choice of discrete test functions ϕT that only contain one non-zero entry.

The existence of solutions to the discrete equations is obtained in a standard
way from the Brouwer fixed-point theorem and the coercivity enjoyed by our
schemes; the uniqueness proof mimics the one of Theorem 1. More precisely,
we have

Proposition 1. Assume (6),(7). Whenever ∆t < 1
2L

, for all given boundary
data satisfying (5) (if ΓD = Ø, we add (24) to the scheme) and for all given
initial data (23) there exists one and only one discrete solution to the scheme
(22),(25); likewise, there exists one and only one discrete solution to the scheme
(22),(26). Moreover, for fixed boundary data, the discrete L2 contraction prop-
erty holds for the vT,∆t component of the solution of the fully implicit scheme
(22),(23),(25): Indeed, for all n∈ [0, N ],

[[
vT,n+1−v̂T,n+1 , vT,n+1−v̂T,n+1

]]
Ω
≤ eL(n+1)∆t

[[
vT,0−v̂T,0 , vT,0−v̂T,0

]]
Ω
. (28)

Remark 8. Let us point out that the fully implicit scheme leads, at each time
level, to a nonlinear system of equations, and to compute the solution given
by Proposition 1 (or, rather, a reasonable approximation to it) we can use the
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following variational formulation of the scheme:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

at the time level n, minimise over RT × RT the functional

J
[
uT
i , u

T
e

]
:= 1

2∆t

[[
vT , vT

]]
Ω
− 1

∆t

[[
vT , vT,n

]]
Ω

+

∫

Ω

H(vT(·))

+
{{

MT
i ∇T

gT,n+1
i

uT , ∇T

gT,n+1
i

uT

}}
Ω

+
{{

MT
e ∇T

gT,n+1
e

uT , ∇T

gT,n+1
e

uT

}}
Ω

−
〈〈
sT,n+1
i , u∂Ti

〉〉
ΓN

−
〈〈
sT,n+1
e , u∂Te

〉〉
ΓN

−
[[
IT,n+1

app , vT

]]
Ω
,

where vT := uT
i − uT

e , and H : z 7→
∫ z

0
h(s) ds is the primitive of h

(in the case ΓD = Ø, the constraint (24) should be added on the domain of the
functional J). Similarly to the argument in [7], it is checked from the discrete
duality formula and from formula (40) in Section 4.7 that the scheme (22) is
the Euler-Lagrange equation for the above problem. From the properties of
h(·) it follows that for ∆t < 1

2L
, we are facing a minimisation problem for the

convex coercive functional J . Thus descent iterative methods can be used for
solving the discrete system (22) at each time step.

Now we can state the main result of this paper.

Theorem 3. Assume (6),(7) hold with some r ≥ 2. Assume that the family of
meshes satisfies the regularity assumptions (29),(30),(31) (and the analogous
restrictions on the mesh M�, for version (C)) stated in Section 4.1. Then

(i) the sequence of solutions
(
uT,∆t
i (·), uT,∆t

e (·), vT,∆t(·)
)

to the fully implicit
scheme (22),(23), (25),(12) converges, as the approximation parame-
ters ∆x,∆t tend to zero, to the unique solution (ui, ue, v) of Problem
(1),(2),(3); the convergence is strong in L2(Q)×L2(Q)×Lr(Q). Moreover,

the discrete gradients converge to (∇ui, ∇ue, ∇v) strongly in
(
L2(Q)

)3
;

(ii) For any r < 16/3, the statement analogous to (i) holds for the discrete
solutions of the linearised implicit scheme (22),(23),(26),(12).

If ΓD = Ø, the constraint (24) should be added to the equations of the
scheme.

In the same vein, the standard 2D DDFV construction can be applied
to problem (1),(2),(3) on 2D polygonal domains. The convergence result of
Theorem 3(i) remains true, and the one of Theorem 3(ii) extends to all r < 6.
We stress that the realistic case r = 4 is covered by our convergence results.
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4 Discrete functional analysis tools for DDFV

schemes

For a given mesh T of Ω as described in Section 2, the size of T is defined as

size(T) := max

{
max
K∈Mo

diam(K) , max
K∗∈M∗

diam(K∗) , max
D∈D

diam(D)

}
.

If the assumption xK ∈ K is relaxed, diam(K) must be replaced with diam(K ∪
{xK}) in the above expression.

In what follows, we will always think of a family of meshes such that size(T)
goes to zero.

4.1 Regularity assumptions on the meshes

In different finite volume methods, one always needs some qualitative re-
strictions on the mesh T (such as, e.g., xK ∈ K, or the convexity of volumes
and/or diamonds, or the mesh orthogonality, or the Delaunay condition on
a simplicial mesh). For the convergence analysis with respect to families of
such meshes, it is convenient (though not always necessary) to impose shape
regularity assumptions. These assumptions are quantitative: this means that
the “distortion” of certain objects in a mesh is measured with the help of a
regularity constant reg(T), which is finite for each individual mesh but may
get unbounded if an infinite family of meshes is considered. For the 3D DDFV
meshes presented in this paper, there are two main mesh regularity assump-
tions. First, we require several lower bounds on dKL, dK∗L∗ :∣∣∣∣∣∣∣∣∣

∀ neighbours K, L, diam (K) + diam (L) ≤ reg(T)dKL;
∀ dual neighbours K∗, L∗, diam (K∗) + diam (L∗) ≤ reg(T)dK∗L∗ ;

∀ diamonds D with vertices xK, xL and with
neighbour dual vertices xK∗ , xL∗ , diam (D) ≤ reg(T) min{dKL, dK∗L∗}.

(29)
Further, we need a bound on the inclination of the (primal and dual) interfaces
with respect to the (dual or primal) edges:
∣∣∣∣∣∣∣∣∣

∀ primal neighbour volumes K, L, the angle αK,L between −−−→xKxL and the
plane K|L is separated from 0 and π, meaning that reg(T) cosαK,L ≥ 1;

∀ neighbour vertices xK∗ , xL∗ of K|L, the angle α∗K∗,L∗ between −−−−→xK∗xL∗

and −−−−−−→xK∗|L∗xK|L is separated from 0 and π, i.e., reg(T) cosα∗K∗,L∗ ≥ 1.

(30)
Also a uniform bound on the number of neighbours of volumes / diamonds

is useful:∣∣∣∣
Each primal volume K has at most reg(T) neighbour primal volumes;
each dual volume K∗ has at most reg(T) neighbour dual volumes.

(31)
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For version (C) of the scheme, we impose in addition conditions on the third
mesh M�; moreover, the number of vertices of a diamond is restricted by
reg(T).

In principle, one can use version (A) and (B) for meshes with general
polygonal faces (see [2]); in practice, we worked in the situation where all
diamond has five (= 2 + 3) or six (= 2 + 4) vertices, because the faces of
the primal volumes were taken to be to be triangles or quadrilaterals; and
our convergence results are shown for the case of triangular primal faces. For
versions (A) and (B), when the number l of vertices of a face K|L exceeds three,
the kernel of the linear form used to reconstruct the discrete gradient in D

K|L is
not always reduced to a constant at the vertices of K|L This is a problem, e.g.,
for the discrete Poincaré inequality and for the proof of discrete compactness.
In general, the situation with l ≤ 4 vertices is not clear; for example, the
discrete Poincaré inequality holds on every individual mesh, but it is not an
easy task to prove that the embedding constant is uniform, even under rigid
proportionality assumptions on the meshes. The uniform Cartesian meshes is
one case with l = 4 that can be treated (see [2, 3]), but they are not suitable
for the application we have in mind.

In this paper, for a certain range of values of the power r in (6),(7), we use
Sobolev embedding inequalities of the discrete H1 spaces into Lq, q > 1; for
these results to hold, we may also require

∣∣∣∣
∀ primal volumes K and interfaces K|L,mK|LdKL ≤ reg(T)Vol(K);
∀ dual volumes K and interface K∗|L∗,mK∗|L∗dK∗L∗ ≤ reg(T)Vol(K∗).

(32)

4.2 Consistency of projections and discrete gradients

Here we gather basic consistency results for the DDFV discretisations. Heuris-
tically, for a given function ϕ on Ω, the projection of ϕ on a mesh T and sub-
sequent application of the discrete gradient ∇T should produce a discrete field
sufficiently close (for size(T) small) to ∇ϕ. Similarly, for a given field ~M, the
adequate projection on the mesh and the application of divT to this projection
should yield a discrete function close to div ~M. In this paper, we mainly use
the mean-value projections. For scalar functions on Ω, two projections on RT

(which has two components, namely the projections on Mo and on M∗) are
used:

PT : ϕ 7→
( ( 1

Vol(K)

∫

K

ϕ
)
K∈Mo ,

( 1

Vol(K∗)

∫

K∗
ϕ
)
K∗∈M∗

)
=:
(
PMo

ϕ , PM∗ϕ
)
,

PT

c : ϕ 7→
( (

ϕ(xK)
)
K∈Mo ,

(
ϕ(xK∗)

)
K∗∈M∗

)
=:
(
PMo

c ϕ , PM∗

c ϕ
)

;

in case K is a degenerate volume in Mo
ΓN

, Vol(K) is zero and we replace the
corresponding entry of PTϕ by the mean value −

∫
K
ϕ of ϕ over the face K ⊂ ΓN .

Similarly, the Neumann data si,e will be taken into account through the values
−
∫
K
si,e for K ∈Mo

ΓN
.
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Further, if we are interested in the values of ϕ on the Dirichlet part of the
boundary, then we use the projection

P∂T : ϕ 7→
( (
−
∫

K

ϕ
)
K∈∂Mo ,

(
−
∫

K∗∩ΓD

ϕ
)
K∗∈∂M∗

)
=:
(
P∂Mo

ϕ , P∂M∗ϕ
)
.

In particular, the Dirichlet data gi,e will be taken into account in this way. For
R3-valued fields on Ω, we use the projection on (R3)D defined by

~PT : ~M 7→
(

1

Vol(D)

∫

D

~M
)

D∈D
.

With each of these discrete functions, we associate piecewise constant func-
tions of x on Ω, on ΓD or on ΓN , according to the sense of the projection;
then we can study convergence, e.g., of ~PT ~M to ~M in Lebesgue spaces, as
size(T) → 0. For the data v0,Iapp, Mi,e, gi,e, si,e, we need the consistency
of the associated projection operators (recall that v0,Iapp are projected on the
meshes Mo

Ω and M∗, Mi,e are projected on the diamonds, gi,e are projected on
the boundary volumes, and si,e are projected on the degenerate interior primal
volumes K ∈Mo

ΓN
). These consistency results can be shown in a straightfor-

ward way (see, e.g., [7]); for example, we have PT Iapp −→ Iapp in L2(Ω), and
P∂T gi,e −→ gi,e in L2(ΓD).

Note that for the study of weak compactness in Sobolev spaces and conver-
gence of discrete solutions, the consistency results can be formulated for test
functions only (and the consistency for divT◦~PT is formulated in a weak form,
except on very symmetric meshes). These results are shown under the regular-
ity restrictions (29),(30),(31) on the mesh; let us give the precise statements.

Proposition 2. Let T be a 3D DDFV mesh of Ω as described in Section 2.
Let reg(T) measure the mesh regularity in the sense of (29),(30),(31). Then
the following results hold:

(i) For all ϕ ∈ D(Ω),
∥∥ϕ− PMo

ϕ
∥∥

L∞(Ω)
≤ C(ϕ) size(T),

∥∥ϕ− PM∗ϕ
∥∥

L∞(Ω)
≤ C(ϕ) size(T);

and for version (C), the analogous estimates hold for
∥∥ϕ− PM�ϕ

∥∥
L∞(Ω)

.

Analogous estimates hold for the projections PMo

c ,PM∗
c .

Similarly, for all ~M∈
(
D(Ω)

)3
,

∥∥ ~M− ~PT~M
∥∥

L∞(Ω)
≤ C( ~M) size(T).

(ii) For all ϕ ∈ D(Ω ∪ ΓN),
∥∥∇ϕ− ∇T

0 (PT

cϕ)
∥∥

L∞(Ω)
≤ C(ϕ, reg(T)) size(T).

(iii) For versions (A) and (B), assume that each primal interface K|L is a

triangle. For each ~M∈
(
D(Ω)

)3
and for all wT ∈ RT

0 ,
∣∣∣
[[
PT
(
div ~M

)
− divT(~PT ~M) , wT

]]
Ω

∣∣∣ ≤ C( ~M, reg(T)) size(T) ‖∇TwT‖L1(Ω).

We refer to [3] for a proof of this result.
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4.3 Discrete Poincaré, Sobolev inequalities and strong
compactness

The key fact here is the following remark:

Assuming (for versions (A), (B)) that each face K|L of Mo is a triangle,
one gets the same embedding results on the 3D DDFV meshes (A), (B), (C)
as the results known for the two-point discrete gradients on Mo and on M∗.

Indeed, for variants (A), (B) it has been already observed in the proof of Propo-
sition 2(iii) that the restriction l = 3 on the number l of dual vertices of a
diamond D

K�|K⊕ allows for a control by | ∇Dw
T| of the finite differences:

|w⊕ − w�|
d�,⊕

≤
∣∣∇Dw

T
∣∣, |w∗i+1−w∗i |

d∗i,i+1

≤
∣∣∇Dw

T
∣∣ (33)

(here i = 1, 2, 3 and by our convention, w∗4 := w∗1, d3,4 := d1,3; cf. Figure 2). For
version (C), this kind of control is always true for the divided differences along
the edges of any of the three meshes. Consequently, for a proof of the different
embeddings, we can treat the primal and the dual meshes in T separately, as
if our scheme was one with the two-point gradient reconstruction.

First we give discrete DDFV versions of the embeddings of the discrete
W 1,p

0 (Ω) spaces, where we refer to the embedding into Lp(Ω) (the Poincaré
inequality), into Lp

∗
(Ω) with p∗ := 3p

3−p , p < 3 (the critical Sobolev embedding),

as well as the compact embeddings into Lq(Ω) for all q < +∞ or q < p∗.

Proposition 3. Let T be a 3D DDFV mesh of Ω as described in Section 2.
Let reg(T) measure the mesh regularity in the sense (30) and (32). Assume
(for versions (A) and (B)) that each primal interface K|L is a triangle.

Let wT ∈ RT
0 . Then

‖wMo‖L2(Ω) + ‖wM∗‖L2(Ω) ≤ C(Ω, reg(T)) ‖∇TwT‖L2(Ω).

Moreover,

‖wMo‖L6(Ω) + ‖wM∗‖L6(Ω) ≤ C(Ω, reg(T)) ‖∇TwT‖L2(Ω).

Notice that for the Poincaré inequality (the first statement), assumption
(32) is not needed, cf. [8] for a proof. Actually, with the hint of [8, Lemma
2.6] the Sobolev embeddings for q ≤ 2× 1∗ = 3 can be obtained without using
(32).

The statement follows in a very direct way from the proofs given in [35, 23,
36]. Because of (33), the assumption that the primal mesh faces are triangles
(i.e., l = 3) is a key assumption for the proof. In some of the proofs in these
papers one refers to admissibility assumptions on the mesh (such as the mesh
orthogonality and assumptions of the kind “|xK − xL| ≤ reg(T)|xK − xK|L|”,
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see [35, 36]), yet, as in [7] (where the proof of the Poincaré inequality is given
for the 2D case), these assumptions are easily replaced by the bounds

mK|LdKL ≤ C(reg(T)) min
{
Vol(D

K|L),Vol(K),Vol(L)
}
,

mK∗|L∗dK∗L∗ ≤ C(reg(T)) min
{
Vol(D

K|L
K∗|L∗),Vol(K∗),Vol(L∗)

} (34)

that stem from the mesh regularity assumptions (32) and (30).
The embeddings of the discrete W 1,p(Ω) space contain an additional term

in the right-hand side, which is usually taken to be either the mean value of
wT on some fixed part Γ of the boundary ∂Ω (used when a non-homogeneous
Dirichlet boundary condition on Γ is imposed), or the mean value of wT on
some subdomain ω of Ω (the simplest choice is ω = Ω, used for the pure
Neumann boundary conditions). Let us point out that the strategy of Eymard,
Gallouët and Herbin in [36] actually allows to obtain Sobolev embeddings
for the “Neumann case” as soon as the Poincaré inequality is obtained. For
the proof, one bootstraps the estimate of

∫
Ω
|wT|α. First obtained from the

Poincaré inequality with α = 2, it is extended to α = 2 · 1∗ = 23
2

= 3 with the
discrete variant [36, Lemma 5.2] (where one can exploit (34)) of the Nirenberg
technique. In the same way, the bound of

∫
Ω
|wT|α is further extended to α =

2(1∗)2 = 2
(

3
2

)2
and so on, until one reaches the critical exponent 2∗ = 6. The

details are given in [6]. Moreover, the Poincaré inequality for the “Neumann
case” (i.e., the embedding into L2(Ω) of the discrete analogue of the space{
u ∈ H1(Ω)

∣∣ ∫
Ω
u = 0

}
) and for the case with control by the mean value

on a part of the boundary, was shown in [36], [38]. Thus we can assume
that the analogue of Proposition 3 with the additional terms

∣∣ 1
Vol(Ω)

∫
Ω
wMo

∣∣,∣∣ 1
Vol(Ω)

∫
Ω
wM∗

∣∣ or
∣∣ 1
|ΓD|

∫
ΓD
wMo

∣∣,
∣∣ 1
|ΓD|

∫
ΓD
wM∗

∣∣ in the right-hand side of the

estimates is justified.
Notice that the compactness of the sub-critical embeddings is easy to obtain

by interpolation of the L6 embedding with the compact L1 embedding derived
from the Helly theorem (indeed, the L1 estimate of ∇TwT can be seen as the
BV estimate of the piecewise constant functions wMo

and wM∗).
Finally, notice that the same arguments that yield the Poincaré inequality

with a homogeneous boundary condition also yield the trace inequality

∥∥w∂Mo∥∥
L2(ΓN )

≤ C(ΓN ,Ω, reg(T))
(∥∥wMo∥∥

L2(Ω)
+
∥∥∇TwT

∥∥
L2(Ω)

)
(35)

(the inequalities on the mesh M∗ and, for the case (C), on the mesh M�

are completely analogous). These inequalities are useful for treating non-
homogeneous Neumann boundary conditions on a part ΓN of ∂Ω.

4.4 Discrete W 1,p(Ω) weak compactness

In relation with Proposition 3(ii), let us stress that there is no reason that
the components wMo

h , wM∗h of a sequence
(
wTh)h of discrete functions with

Lp bounded discrete gradients converge to the same limit. Counterexamples
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are constructed starting from two distinct smooth functions discretised, one
on the primal mesh Mo, the other on the dual mesh M∗.

However, the proposition below shows that in our 3D DDFV framework,
we can assume that the “true limit” of the discrete functions wTh =

(
wMo

h,

wM∗h
)

or wTh =
(
wMo

h, wM∗h, wM�h
)

coincides with the limit of (12).

Proposition 4.
(i) Let wTh ∈ RTh be discrete functions on a family (Th)h of 3D DDFV meshes
of Ω as described in Section 2, parametrised by h ≥ size(Th). Assume ΓD 6= Ø
and let gT = PTg, for some fixed boundary datum g ∈ H1(Ω). Assume that
the family

(
∇Th

gTh
wTh

)
h∈(0,hmax]

is bounded in L2(Ω).

Assume (for versions (A) and (B)) that each primal interface K|L is a tri-
angle. Assume that suph∈(0,hmax] reg(Th) < +∞, where reg(Th) measures the
regularity of Th in the sense (29),(30),(31) and (32).

According to the type of 3D DDFV meshing considered, let us assimilate
wTh into the piecewise constant functions wTh(·) defined by (12); furthermore,
let us assimilate the discrete gradient ∇Th

gTh
wTh to the function

(
∇Th

gTh
wTh

)
(·)

on Ω. Then for any sequence (hi)i converging to zero there exists w ∈ g + V
such that, along a sub-sequence,

∣∣∣∣
wThi (·) converges to w strongly in L2(Ω) (in fact, in Lq(Ω), q < 6)
and

(
∇ThiwThi

)
(·) converges to ∇w weakly in L2(Ω).

(36)

(ii) If ΓD = Ø, and if the additional assumption of uniform boundedness of

mwMo
h

:=
1

Vol(Ω)

∫

Ω

wMo
h , m

wM∗h :=
1

Vol(Ω)

∫

Ω

wM∗h

is imposed (with the analogous bound on the mesh M� for version (C)), then
(36) holds with w ∈ H1(Ω).

Let us illustrate the DDFV techniques by giving the ideas of the proof.
We justify (i) for the case of the meshing described in Section 2 and the
homogeneous Dirichlet boundary condition on ΓD := ∂Ω. The case of a non-
homogeneous Dirichlet condition is thoroughly treated in [7], for the 2D DDFV
schemes. The case of Neumann boundary conditions is the simplest one.

Proof of Proposition 4. The strong compactness claim follows by the compact-
ness of the subcritical Sobolev embeddings of Proposition 3. The weak L2

compactness of the family
(
∇ThwTh

)
h

is immediate from its L2(Ω) bounded-

ness. Thus if w is the strong L2 limit of a sequence wTh = 1
3
wMo

h + 2
3
wM∗h

as h → 0 and χ is the weak L2 limit of the associated sequence of discrete
gradients ∇ThwTh , it only remains to show that χ = ∇w in the sense of dis-
tributions and that w has zero trace on ∂Ω. These two statements follow from
the identity

∀ ~M∈ D(Ω)3

∫

Ω

χ · ~M+

∫

Ω

w div ~M = 0, (37)
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that we now prove. We exploit the discrete duality and the consistency prop-
erty of Proposition (2)(i),(iii).

Take the projection ~PTh ~M ∈ (R3)Dh , wTh ∈ RTh
0 and write the discrete

duality formula

{{
∇ThwTh , ~PTh ~M

}}
Ω

+
[[
wTh , divTh~PTh ~M

]]
Ω

= 0. (38)

According to the definition of
{{
· , ·
}}

Ω
, the first term in (38) is precisely the

integral over Ω of the scalar product of the constant per diamond fields ∇ThwTh

and ~PTh ~M. By Proposition (2)(i) and the definition of χ, this term converges
to the first term in (37) as h → 0. Similarly, introducing the projection

PTh
(
div ~M

)
of div ~M on RTh , from the definition of

[[
· , ·
]]

Ω
, Proposition (2)(i)

and the definition of wTh in (12), we see that, as h→ 0,

[[
wTh , PT

(
div ~M

) ]]
Ω
−→1

3

∫

Ω

(
lim
h→0

wMo
h
)

div ~M

+
2

3

∫

Ω

(
lim
h→0

wM∗h
)

div ~M =

∫

Ω

w div ~M.

It remains to invoke Proposition (2)(iii) and the L1(Ω) bound on ∇ThwTh to
justify the fact that

lim
h→0

[[
wTh , divTh~PTh ~M

]]
Ω

= lim
h→0

[[
wTh , PT

(
div ~M

)]]
Ω
.

For a proof of (ii) use the versions of the compact Sobolev embeddings with

control by the mean value in Ω, and use test functions ~M compactly supported
in Ω.

4.5 Discrete operators, functions and fields on (0, T )×Ω

We discretise our evolution equations in space using the DDFV operators as de-
scribed above. In this time-dependent framework, analogous consistency prop-
erties, Poincaré inequality and discrete Lp(0, T ;W 1,p(Ω)) compactness proper-
ties hold.

To be specific, given a DDFV mesh T of Ω and a time step ∆t, one considers
the additional projection operator

S∆t : f 7→
(
fn
)
n∈[1,N∆t]

⊂ L1(Ω), fn(x) :=
1

∆t

∫ n∆t

(n−1)∆t

f(t, x) dt.

Here f can mean a function in L1((0, T ) × Ω) or a field in
(
L1((0, T ) × Ω)

)3
.

The greatest integer smaller than or equal to T/∆t is denoted by N∆t.
We define discrete functions wT,∆t ∈ (RT)N∆t on (0, T ) × Ω as collections

of discrete functions wT,n+1 on Ω parametrised by n ∈ [0, N∆t] ∩ N. Discrete
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functions wT,∆t ∈ (RT)N∆t on (0, T ) × Ω and discrete fields ~MT,∆t ∈ (RD)N∆t

are defined similarly. The associated norms are defined in a natural way;
e.g., the discrete L2(0, T ; H1

0(Ω)) norm of a discrete function wT,n ∈ (RT
0 )N∆t is

computed as
(∑N∆t

n=0
∆t ‖∇TwT,n+1‖2

L2(Ω)

) 1
2

.

To treat space-time dependent test functions and fields as in Proposition 2,
one replaces the projection operators PT (and its components PMo

,PM∗), P∂T
and ~PT by their compositions with S∆t. Then the statements and proof of
Proposition 2 can be extended in a straightforward way.

Also the statements of Proposition 4 extend naturally to the time-dependent
context; one only has to replace the statement (36) with the weak L2(0, T ; H1(Ω))
convergence statement:

∣∣∣∣
wTh,∆th converges to w weakly in L2((0, T )× Ω) and in L2(0, T ; L6(Ω));
∇ThwTh,∆th converges to ∇w weakly in L2(Ω),

as size(Th) + ∆th → 0 (here and in the sequel, (∆th)h is a family of time
steps associated with the family (Th)h of DDFV meshes). It is natural that
strong compactness on the space-time cylinder (0, T )×Ω does not follow from
a discrete spatial gradient bound alone; one also needs some control of time
oscillations. It is also well known that this control can be a very weak one (cf.,
e.g., the well-known Aubin-Lions and Simon lemmas). In the next section, we
give the discrete version of one of these results.

4.6 Strong compactness in L1((0, T )× Ω)

Below we state a result that fuses a basic space translates estimate (for the
“compactness in space”) with the Kruzhkov L1 time compactness lemma (see
[51]). Actually, the Kruzhkov lemma is, by essence, a local compactness result.
For the sake of simplicity, we state the version suitable for discrete functions
that are zero on the boundary; the corresponding L1

loc([0, T ]× Ω) version can
be shown with the same arguments (cf. [6]), and this local version can be used
for all boundary conditions.

Proposition 5. Let
(
uTh,∆th

)
h
∈ (RTh

0 )N∆th be a family of discrete functions
on the cylinder (0, T )× Ω corresponding to a family (∆th)h of time steps and
to a family (Th)h of 3D DDFV meshes of Ω as described in Section 2; we
understand that h ≥ size(Th)+∆th. Assume that suph∈(0,hmax] reg(Th) < +∞,
where reg(Th) measures the regularity of Th in the sense (29) and (30).

Assume (for versions (A) and (B)) that all primal interfaces K|L for all
meshes Th are triangles. For each h > 0, assume that the discrete functions
vTh,∆th satisfy the discrete evolution equations

for n ∈ [0, Nh],
vTh,n+1 − vTh,n

∆t
= divTh ~MTh,n+1 + fTh,n+1
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with some initial data vTh,0 ∈ RTh , source terms fTh,∆th ∈ (RTh)N∆th and

discrete fields ~MTh,∆th ∈ ((R3)Dh)N∆th .
Assume that there is a constantM such that the following uniform L1((0, T )×

Ω) estimates hold:

∑Nh

n=0
∆t
(∥∥ vMo

h,n+1
∥∥

L1(Ω)
+
∥∥ vM∗h,n+1

∥∥
L1(Ω)

+
∥∥ fMo

h,n+1
∥∥

L1(Ω)
+
∥∥ fM∗h,n+1

∥∥
L1(Ω)

+
∥∥ ~MTh,n+1

∥∥
L1(Ω)

)
≤M,

and ∑Nh

n=0
∆t
∥∥ ∇ThuTh,n+1

∥∥
L1(Ω)

≤M.

Assume that the families
(
b(uMo

h,0)
)
h
,
(
b(uM∗h,0)

)
h

are bounded in L1(Ω).

Then for any sequence (hi)i converging to zero there exist βo, β∗ ∈ L1((0, T )×
Ω) such that, extracting if necessary a sub-sequence,

b(uMo
hi
,∆thi ) −→ βo, b(uM∗hi ,∆thi ) −→ β∗, in L1((0, T )× Ω) as i→∞.

Notice that we only use the full strength of Proposition 5 to treat the
linearised implicit scheme. For the fully implicit scheme, more traditional
(although not much simpler) L2 versions of time translation estimates, inspired
by the technique of [1], can be used (see [35]).

4.7 Discretisation of the ionic current term

Consider the general situation where w is discretised on a DDFV mesh. More-
over, assume that we also need to discretise some scalar function ψ(w) (in our
context, this is the ionic current term h; in general reaction-diffusion systems,
ψ may represent reaction terms).

Then we discretise such reaction term on a 3D DDFV mesh of the kind
(B) by taking, for Ψ = ψ(w),

ΨT :=
( (
ψ(w̌K)

)
K∈Mo ,

(
ψ(w̌K∗)

)
K∗∈M∗

)
,

w̌K :=
1

3
wK +

2

3

∑

K∗∈M∗

Vol(K ∩ K∗)

Vol(K)
wK∗ ,

w̌K∗ :=
1

3

∑

K∈M∗

Vol(K ∩ K∗)

Vol(K∗)
wK +

2

3
wK∗

(39)

In other words,

w̌K and w̌K∗ are the mean values
of the function wT(·) := 1

3
wMo

(·) + 2
3
wM∗(·) on K and on K∗, respectively.

With this choice, we have for all wT ∈ RT
0 and for all ϕT ∈ RT,

[[
(ψ(w))T, ϕT

]]
Ω

=

∫

Ω

ψ

(
1

3
wMo

+
2

3
wM∗

) (
1

3
ϕMo

+
2

3
ϕM∗

)
=

∫

Ω

ψ
(
wT(·)

)
ϕT(·).
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For schemes (A) and (C), we use similar projection formulas with the expres-
sion of wT(·) given by (12); this always leads to the formula

[[
(ψ(w))T, ϕT

]]
Ω

=

∫

Ω

ψ
(
wT(·)

)
ϕT(·). (40)

By the definition (12) of wT(·), the definition of
[[
· , ·
]]

Ω
, and Jensen’s in-

equality, we get

∀ wT ∈ RT

∫

Ω

∣∣wT(·)
∣∣2 ≤

[[
wT, wT

]]
Ω
. (41)

Finally, notice that such choice of discretisation of the ionic current term
does not enlarge the stencil of the DDFV scheme used for the discretisation of
the diffusion.

5 The convergence proofs

5.1 Convergence of the fully implicit scheme

The proof follows closely the existence proof for Problem (1),(2),(3) mentioned
in Section 1.

Step 1 (proof of Proposition 1 – uniqueness of a discrete solution). Al-
though Remark 8 can be used to infer the existence and uniqueness of a
discrete solution, let us give a proof that contains the essential calculations
also utilised in the subsequent steps. For the uniqueness and the continu-
ous dependence claim (28) we reason as in Theorem 1, omitting the regular-

isation step. Namely, using (22) for two solutions
(

(uT,∆t
i , uT,∆t

e , vT,∆t)
)

and
(

(ûT,∆t
i , ûT,∆t

e , v̂T,∆t)
)

, by subtraction we get

(42i.e)

1

∆t

(
(vT,n+1−v̂T,n+1)− (vT,n−v̂T,n)

)
−
(
hT,n+1−ĥT,n+1

)

−(−1)i,e div T

sT,n+1
i,e

[ MT

i,e

(
∇T

gT,n+1
i,e

uT,n+1
i,e −∇T

gT,n+1
i,e

ûT,n+1
i,e

)
] = 0

with (−1)i :=1, (−1)e :=−1 and hT,n+1 = PTh(vT,n+1(·)), ĥT,n+1 = PTh(v̂T,n+1(·)).
For all n, we take the scalar product

[[
· , ·
]]

Ω
of equations (42i.e) with the dis-

crete functions ϕT :=
(
uT,n+1
e −ûT,n+1

e

)
, respectively (more precisely, we use the

discrete weak formulations (27) with test function ϕT). Then we subtract the
relation obtained for e from the relation obtained for i. Finally, we use the
discrete duality property (11) on the divergence terms. Notice that the bound-
ary terms vanish, because both solutions correspond to the same Dirichlet and
Neumann data gT,∆t

i,e , sT,∆ti,e ; in particular, we can use (11) because

(
∇T

gT,n+1
i,e

uT,n+1
i,e −∇T

gT,n+1
i,e

ûT,n+1
i,e

)
= ∇T

0

(
uT,n+1
i,e −ûT,n+1

i,e

)
,
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further, the terms coming from ΓN are
〈〈
sT,n+1
i,e −sT,n+1

i,e , uT,n+1
i,e −ûT,n+1

i,e

〉〉
ΓN

= 0.

The outcome of the calculation is the following equality:

1

∆t

[[ (
vT,n+1−v̂T,n+1

)
−
(
vT,n−v̂T,n

)
,
(
vT,n+1−v̂T,n+1

) ]]
Ω

+
{{

MT

i

(
∇T

gT,n+1
i

uT,n+1
i −∇T

gT,n+1
i

ûT,n+1
i

)
,
(
∇T

gT,n+1
i

uT,n+1
i −∇T

gT,n+1
i

ûT,n+1
i

)}}
Ω

+
{{

MT

e

(
∇T

gT,n+1
e

uT,n+1
e −∇T

gT,n+1
e

ûT,n+1
e

)
,
(
∇T

gT,n+1
e

uT,n+1
e −∇T

gT,n+1
e

ûT,n+1
e

)}}
Ω

+
[[ (

hT,n+1−ĥT,n+1
)
,
(
vT,n+1−v̂T,n+1

)]]
Ω

= 0. (43)

Then we sum over n ∈ [0, k], k ≤ N . Using the convexity inequality a(a−b) ≥
1
2
(a2 − b2), the positivity of MT

i,e and the definition of b̃, using (40) we get

1

2

[[ (
vT,k+1−v̂T,k+1

)
,
(
vT,k+1−v̂T,k+1

) ]]
Ω

+
k∑

n=0

∆t

∫

Ω

(
h̃(vT,n+1(·))− h̃(v̂T,n+1(·))

)(
vT,n+1(·)− v̂T,n+1(·)

)

≤ 1

2

[[ (
vT,0−v̂T,0

)
,
(
vT,0−v̂T,0

) ]]
Ω

+ L
k∑

n=0

∆t

∫

Ω

∣∣vT,n+1(·)− v̂T,n+1(·)
∣∣2. (44)

Then the second term is non negative, and we get (28) from (41) and the
discrete Gronwall inequality.

In particular, it follows that for fixed initial and boundary data there is
uniqueness of vT,k+1 for all k. Then, returning to (43), we find out that there
is uniqueness for ∇T

gT,n+1
i,e

uT,n+1
i,e for all n. We conclude the uniqueness of uT,n+1

i,e

using the discrete Poincare inequality (and, in the case ΓD = Ø, using condition
(24)).

Step 2 (proof of Proposition 1 – existence of a discrete solution). Regarding
the question of existence, we reason by induction in n. Using the discrete weak
formulation (27) with the test function ϕT = uT

i,e, subtracting the equations
obtained for subscripts i and e, we find

1

∆t

[[
vT,n+1 , vT,n+1

]]
Ω

+

∫

Ω

h̃(vT,n+1(·)) vT,n+1(·)

+
{{

MT

i ∇T

gT,n+1
i

uT,n+1
i , ∇T

gT,n+1
i

uT,n+1
i

}}
Ω

+
{{

MT

e ∇T

gT,n+1
e

uT,n+1
e , ∇T

gT,n+1
e

uT,n+1
e

}}
Ω

=
1

∆t

[[
vT,n , vT,n+1

]]
Ω

+

∫

Ω

(
L
∣∣vT,n+1(·)|2 + l vT,n+1(·)

)

+
[[
IT,n+1

app , vT,n+1
]]

Ω
+
〈〈
sT,n+1
i , uT,n+1

i

〉〉
ΓN

+
〈〈
sT,n+1
e , uT,n+1

e

〉〉
ΓN

.
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Then using the condition 1
∆t
> L, property (41), the Cauchy-Schwarz inequal-

ity and the equivalence of all norms on RT, we deduce the a priori estimate

γ

2

({{
∇T

gT,n+1
i

uT,n+1
i , ∇T

gT,n+1
i

uT,n+1
i

}}
Ω

+
{{
∇T

gT,n+1
e

uT,n+1
e , ∇T

gT,n+1
e

uT,n+1
e

}}
Ω

)

+

(
1

2∆t
− L

)[[
vT,n+1 , vT,n+1

]]
Ω
≤ C(vT,n, IT,n+1

app , sT,n+1
i,e , gT,n+1

i,e , l, γ,Ω,ΓD).

The left-hand side allows us to bound the discrete solutions a priori, if ΓD 6= Ø.
The case of pure Neumann BC is slightly more delicate.

We take advantage of the above estimate to apply the Leray-Schauder
topological degree theorem. Let us look at the most delicate case ΓD = Ø.

For θ ∈ [0, 1], we consider the initial data θv0, the Dirichlet and Neumann
boundary data θgi,e and θsi,e, and the source term θIapp. We consider a family
F θ of maps on the space

Sp :=
{(

(uT,n
i , uT,n

e , vT,n)
)
n=1,...,N

⊂ (RT)3
∣∣∣ (24) holds for all n

}

defined as follows. First, given an element in Sp denoted UT,n+1, introduce the
following notation for the expressions in the left-hand side of equations (22)
with data scaled by θ:

αθi (U
T,∆t) := vT,n+1−vT,n

∆t
− div T

θsT,n+1
i

[MT
i ∇T

θgT,n+1
i

uT,n+1
i ] + hT,n+1 − θIT,n+1

app ,

αθe(U
T,∆t) := vT,n+1−vT,n

∆t
+ div T

θsT,n+1
e

[MT
e ∇T

θgT,n+1
e

uT,n+1
e ] + hT,n+1 − θIT,n+1

app ,

γθ(UT,∆t) := vT,n − (uT,n
i − uT,n

e );

recall that for the volumes K ∈Mo
ΓN

, the convention (19) applies, so that the
entry of αθi,e(U

T,n+1) corresponding to the volumes K ∈Mo
ΓN

should be taken
equal to (Mi,e)

n+1
D ·νK+(si,e)

n+1
K , where the diamond D is the one with K ⊂ ∂D.

Then we define F θ as the element of RT×RT×RT given by
(
αθi , α

θ
i − αθe, γθ

)
.

This definition implies that F θ maps Sp into itself, thanks to the definition
of the discrete divergence (which ensures the consistency of the fluxes) and to
the constraint (5) that is preserved at the discrete level.

With this definition, it is evident that the zeros of F θ are solutions of the
scheme (22) with data scaled by θ. The estimate that we have just deduced is
uniform in θ; it provides a uniform in θ bound on some norm of possible zeros
of F θ in Sp. Therefore from the Leray-Schauder theorem and the existence of
a trivial zero of F0 we infer existence of a zero for F θ, in particular for θ = 1.

Step 3 (Estimates of the discrete solution). We make the same calculation

as in Step 1, but with ûT,∆t
i,e set to zero; and we sum over n = 1, . . . , k. Using

the convexity inequality a(a − b) ≥ 1
2
(a2 − b2), the positivity of MT

i,e and the
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definition of b̃, using (40) we get the identity

1

2

[[
vT,k+1 , vT,k+1

]]
Ω

+

∫ (k+1)∆t

0

∫

Ω

h̃(vT,∆t(·)) vT,∆t(·)

+ γ

∫ (k+1)∆t

0

∫

Ω

(∣∣(∇T

gT,∆t
i

uT,∆t
i

)
(·)
∣∣2+
∣∣(∇T

gT,∆t
e

uT,∆t
e

)
(·)
∣∣2
)

≤ 1

2

[[
vT,0 , vT,0

]]
Ω

+

∫ (k+1)∆t

0

∫

Ω

(
L
∣∣vT,∆t(·)|2 + l vT,∆t(·)

)

+

∫ (k+1)∆t

0

∫

Ω

IT,∆t
app (·) vT,∆t(·)

+

∫ (k+1)∆t

0

∫

ΓN

(
s∂T,∆ti (·) , u∂T,∆ti (·) + s∂T,∆te (·) , u∂T,∆te (·)

)
.

Using the Cauchy-Schwarz inequality, property (41), the trace inequality (35)
for each components of the solution, and the discrete Gronwall inequality, we
deduce the following uniform bounds:

‖vT,∆t(·)‖L∞(0,T ;L2(Ω)) ≤ C; (45)

‖vT,∆t(·)‖Lr(Q) ≤ C; (46)

‖uT,∆t
i,e (·)‖L2(Q) +

∥∥(∇T

gT,∆tu
T,∆t
i,e

)
(·)
∥∥

L2(Q)
≤ C, (47)

where C depends on reg(T), γ, α, L, l, ‖v0‖L2(Ω), ‖Iapp‖L2(Q), ‖gi,e‖L2(0,T ;H1(Ω)),
and ‖si,e‖L2((0,T )×ΓN ). As usual, in order to obtain (47), the case ΓD = Ø is
treated separately, using the normalisation property (24) for ue, the L2(Q)
bound on v and the fact that ue = ui − v.

Step 4 (Continuous weak formulation for the discrete solutions). We take

a test function ϕ ∈ D
(
(0, T ]×

(
Ω∪ΓN

))
and discretise it as follows:

ϕT,∆t := PT

c ◦S∆tϕ; on the Dirichlet boundary, we take ϕ∂T := 0.

Then we use the discrete weak formulation (27) with test function ∆tϕT,n+1 at
time level n, and sum over n. What we get is

N∑

n=0

[[
vT,n+1−vT,n , ϕT,n+1

]]
Ω

+
N∑

n=0

∆t
[[
hT,n+1 , ϕT,n+1

]]
Ω

+
N∑

n=0

∆t
{{

MT

i ∇T

gT,n+1
i

uT,n+1
i , ∇0ϕ

T,n+1
}}

Ω

=
N∑

n=0

∆t
[[
IT,n+1

app , ϕT,n+1
]]

Ω
+

N∑

n=0

∆t
〈〈
sT,n+1
i , ϕ∂T,n+1

〉〉
ΓN

. (48)

The equation for the components uT,∆t
e is analogous.
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We use summation by parts on the first term in (48), the Lipschitz conti-
nuity of ∂tϕ, the definition of vT,0 and Proposition 2(i), to see that this term
equals

−
∫∫

Q

vT,∆t(·) ∂tϕ−
∫

Ω

v0 ϕ(0, ·) + r1
ϕ(size(T),∆t)(1 + ‖v0‖L1(Ω)),

where rϕ denotes a generic remainder term such that rϕ(size(T),∆t) → 0 as
size(T),∆t→ 0. Thanks to (40), the second term in (48) is merely

N∑

n=0

∆t

∫

Ω

h(vT,n+1(·)) ϕT,n+1(·) =

∫∫

Q

h(vT,∆t(·)) ϕT,∆t(·)

=

∫∫

Q

h(vT,∆t(·)) ϕ+ rϕ(size(T),∆t)C(reg(T))
∥∥h(vT,∆t)

∥∥
L1(Q)

.

Because the discrete gradients are constant per diamond, thanks to the def-
inition of MT,n+1

i and to the discrete gradient consistency result of Proposi-
tion 2(ii), the third term in (48) is equal to

N∑

n=0

∆t

∫

Ω

Mi(·)∇T

gT,n+1
i

uT,n+1
i (·) · ∇0ϕ

T,n+1(·) =

∫∫

Q

Mi(·)∇T

gT,∆t
i

uT,∆t
i (·) · ∇ϕ

+ rϕ(size(T),∆t)C(reg(T))‖Mi‖L∞(Ω)

∥∥∇T

gT,∆tu
T,∆t
i

∥∥
L1(Q)

.

Similarly, thanks to further consistency results, the two last terms in (48) can
be rewritten as

∫∫

Q

Iapp ϕ+

∫ T

0

∫

ΓN

si ϕ+rϕ(size(T),∆t)C(reg(T))
(
‖Iapp‖L1(Q)+‖si‖L1((0,T )×ΓN

)
.

Gathering the above calculations, we end up with the weak form of the discrete
equation:

∫∫

Q

(
−vT,∆t(·)∂tϕ+ Mi(·)∇T

gT,∆t
i

uT,∆t
i (·) · ∇ϕ+ h(vT,∆t(·)) ϕ

)

=

∫

Ω

v0 ϕ(0, ·) +

∫∫

Q

Iapp ϕ+

∫ T

0

∫

ΓN

si ϕ

+ C rϕ(size(T),∆t)
(

1 +
∥∥∇T

gT,∆tu
T,∆t
i

∥∥
L1(Q)

)
; (49)

the constant C depends on the data of the problem, Ω and reg(T). The second
equation of the system is analogous, with uT,∆t

i replaced by uT,∆t
e and with signs

changed accordingly.
Step 5 (Convergences via compactness). All the convergences below are

along a sub-sequence of a sequence ∆tm,Tm of time steps and meshes with
size(Tm) + ∆tm tending to zero as m → ∞. In what follows, we drop the
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subscripts “m” in the notation; indeed, after the identification of the limits,
the uniqueness of a solution to Problem (1),(2),(3) will permit to suppress the
extraction argument.

From (47) and the compactness results in Sections 4.4, 4.5, we readily find
that

uT,∆t
i,e (·)→ ui,e,

(
∇T

gT,∆tu
T,∆t
i,e

)
(·)→ ∇ui,e weakly in L2(Q), (50)

as size(T),∆t → 0; and ui,e − gi,e ∈ L2(0, T ;V ). Because vT,∆t = uT,∆t
i −

uT,∆t
e (·), analogous convergences hold for vT,∆t and its discrete gradient, the

corresponding limits being v := ui − ue and ∇v, respectively.
Moreover, if ΓD = ∂Ω, gi,e ≡ 0, we can use the compactness result of Sec-

tion 4.6 and infer the strong convergence of vT,∆t(·) in L1(Q); by the preceding
remark, the limit is identified with v. In the case of other boundary condi-
tions, we use the local version of Proposition 5 (shown in [6] for traditional
finite volume schemes; the adaptation to DDFV schemes is straightforward).
Up to now we only have the L1(0, T ; L1

loc(Ω)) convergence of vT,∆t(·) to v. In
both cases, the uniform up-to-the-boundary estimate (46) and the interpola-
tion argument yield the strong convergence of vT,∆t(·) to v in Lr−ε(Q), for all
ε > 0, and the weak Lr(Q) convergence. In particular, thanks to the growth
assumption (6) on h we have

h(vT,∆t(·))→ h(v), strongly in L1(Q) as size(T),∆t→ 0. (51)

Step 6 (Passage to the limit in the continuous weak formulation). In view
of the properties (50),(51) of Step 5, the passage to the limit in (49) and the
corresponding equation for uT,∆t

e is straightforward. We conclude that the limit

triple
(
ui, ue, v

)
of
(
uT,∆t
i , uT,∆t

e , vT,∆t
)

is a weak solution of Problem (1),(2),(3).

In view of the uniqueness of a weak solution, we can bypass the “extraction of
a sub-sequence” part in Step 5. This ends the convergence proof.

Step 7 (Strong convergences). We will prove that the functions uT,∆t
i,e and

their discrete gradients converge strongly to ui,e,∇ui,e, respectively, in L2(Q),
while vT,∆t converges strongly to v in Lr(Q). To this end, we will utilise
monotonicity arguments to improve the weak convergences to the strong ones.

By the established weak convergences and the strong L2 convergence of
vMo,0, vM∗,0 and (for version (C)) of vM�,0 to v0, we get

lim
size(T),∆t→0

(
1

2

[[
vT,0, vT,0

]]
Ω

+
N∑

n=0

∆t
[[
IT,n+1

app , vT,n+1
]]

Ω

+
N∑

n=0

∆t
〈〈
sT,n+1
i , u∂T,n+1

i

〉〉
ΓN

+
N∑

n=0

∆t
〈〈
sT,n+1
i , u∂T,n+1

e

〉〉
ΓN

)

=
1

2

∫

Ω

|v0|2 +

∫∫

Q

Iapp v +

∫ T

0

∫

ΓN

(
siui + seue

)
. (52)

First, as in Step 2, take the discrete solutions uT,∆t
i,e as test functions in the

discrete equations and subtract the resulting identities. Next, with the help of





DDFV schemes for the bidomain cardiac model

the regularisation Lemma 2, take ui,e as test functions in the two equations of
the system, and subtract the resulting identities. Comparing the two relations
with the help of (52), using in addition inequality (41), we infer

lim
size(T),∆t→0

(
1

2

∫

Ω

∣∣vT,∆t(T )
∣∣2 +

∫∫

Q

h̃(vT,∆t(·)) vT,∆t(·)

+

∫∫

Q

(
Mi(·)

(
∇T

gT,∆t
i

uT,∆t
i

)
(·) ·

(
∇T

gT,∆t
i

uT,∆t
i

)
(·)

+ Me(·)
(
∇T

gT,∆t
e

uT,∆t
e

)
(·) ·

(
∇T

gT,∆t
e

uT,∆t
e

)
(·)
) )

≤ 1

2

∫

Ω

|v(T )|2 +

∫∫

Q

h̃(v) v +

∫∫

Q

(
Mi∇ui · ∇ui + Me∇ue · ∇ue

)
.

Furthermore, let us assume for simplicity that L = 0, l = 0 (which means
that h(0) = 0 and h(r)r ≥ 0, so that the Fatou lemma can be used); to treat
the general case, use the test function ζ(t) := exp(2L(T − t))1l[0,T )(t) in order

to absorb the terms containing L|v|2ζ into the term v2

2
∂tζ.

By the Fatou lemma and properties of weak convergence (with respect to
weighted vector-valued L2(Q) spaces with weights the matrices Mi,e > 0),
we conclude that the above inequality is actually an equality. Using the fact
that weak convergence plus convergence of norms yields strong convergence in
uniformly convex Banach spaces, using an easy refinement of the Fatou lemma3

(convergence of the integrals implies the strong convergence), we conclude that

(
∇T

gT,∆t
i,e

uT,∆t
i,e

)
(·) → ∇ui,e strongly in L2(Q),

h̃(vT,∆t(·)) vT,∆t(·) → h̃(v)v strongly in L1(Q).

Using the lower bound in (6) and the Vitali theorem, we infer that ‖vT,∆t(·)‖Lr(Q)

converges to ‖v‖Lr(Q), thus the weak Lr(Q) convergence of vT,∆t(·) to v is up-
graded to the claimed strong convergence.

Finally, the strong L2(Q) convergence of the discrete gradients of uT,∆t
i,e

ensures a uniform estimate on their translates in time:
∫ T−τ

0

∫

Ω

| ∇TuT,∆t
i,e (t+τ, x)−∇TuT,∆t

i,e (t, x)|2 dxdt→ 0 as τ→0, uniformly in T,∆t.

Then the discrete Poincaré inequality yields a uniform control of the L2(Q)
time translates

∫ T−τ

0

∫

Ω

|uT,∆t
i,e (t+ τ, x)− uT,∆t

i,e (t, x)|2 dxdt

3This result is sometimes referred to as the Schaeffe lemma, and it can be stated as

follows:
[

fn ≥ 0, fn → f a.e. on Ω,

∫

Ω

fn →
∫

Ω

f as n→∞
]

=⇒
[

fn →

f in L1(Ω) as n→∞
]
.
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of uT,∆t
i,e (here we also use the uniform time translates of the discrete Dirichlet

data gT,∆t
i,e ; as usual, the case ΓD = Ø is treated separately). Because we can

control the space translates of uT,∆t
i,e through the uniform L2(Q) estimate of

∇TuT,∆t
i,e (see Section 4.3), we conclude that uT,∆t

i,e converge strongly in L2(Q)
to to ui,e.

Remark 9. Under some stronger proportionality assumptions on the meshes,
consistency properties similar to those of Proposition 2(i),(ii) hold not only
for test functions, but also for functions in L2(0, T ; H1(Ω)) (cf. [7]). Using the
argument of [7], we conclude that the discrete solution uT,∆t

i,e converges strongly
in L2(Ω) to ui,e. Indeed, from the discrete Poincaré inequality we derive the
estimate

∥∥uMo,∆t
i,e − PMo ◦ S∆tui,e

∥∥
L2(Q)

≤ C(reg(T),Ω)
∥∥∇T

gT,∆t
i,e

uT,∆t
i,e − ∇T

gT,∆t
i,e

PT ◦ S∆tui,e
∥∥

L2(Q)

and analogous estimates on the meshes M∗ and (for version (C)) M�. Then
the consistency and strong convergence of the discrete gradients imply the
desired result: we find

∥∥uMo,∆t
i,e − ui,e

∥∥
L2(Q)

→ 0 as size(T),∆t → 0, and so

forth.

5.2 A linearised implicit scheme and its convergence

We follow step by step the preceding proof and indicate the modifications
needed to take into account the linearised-implicit treatment of the ionic cur-
rent term. We notice that throughout the calculations of the preceding proof,

h̃(vT,∆t(·)) should be replaced by b(vT,∆t(· − ∆t))vT,∆t(·); (53)

where we have set vT,∆t(t, ·) := vT,0(·) for t ∈ (−∆t, 0], and by vT,∆t(· − ∆t) we
mean the function (t, x) ∈ Q 7→ vT,∆t(t− ∆t, x).

Step 1. We cannot get the continuous dependence with the same technique,
but by induction, we get uniqueness. Indeed, as soon as the uniqueness of vT,n

is justified, we have
∫

Ω

(
b(vT,n(·))vT,n+1(·)− b(vT,n(·))v̂T,n+1(·)

)(
vT,n+1(·)− v̂T,n+1(·)

)
≥ 0.

This inequality plays the same role as the non-negativity of the second term
in (44).

Steps 2 and 4. The arguments are unchanged, except for (53).
Step 3. The estimates (45) and (47) remain true. Notice that the function

b is non-negative. Therefore the estimate (46) is replaced by the following one:

∫∫

Q

b(vT,∆t(· − ∆t))
∣∣vT,∆t(·)

∣∣2 ≤ C. (54)
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Now we use new arguments. Namely the discrete Sobolev embedding inequality
of Section 4.3 yields a uniform L2(0, T ; L6(Ω)) bound on vT,∆t; then interpola-
tion with the L∞((0, T ),L2(Ω)) bound (45) ensures that

‖vT,∆t(·)‖L10/3(Q) ≤ C. (55)

Step 5. The main difference is the way we ensure the strong L1(Q) conver-

gence of vT,∆t and the weak L1(Q) convergence of the associated ionic current
term

hT,∆t(·) := b(vT,∆t(· − ∆t))vT,∆t(·) − LvT,∆t(·) − l. (56)

It is sufficient to treat the nonlinear part of hT,∆t(·); thus we can “forget” about
the two last terms in (56). Let us first notice that the definition of b and the
growth bound (6) on h imply that for some constant β = β(α,L, l) we have

b(z) ≤ β (1 + |z|r−2).

Then the assumption r − 2 < 16/3 − 2 = 10/3 made in Theorem 3(ii) and
the uniform L10/3(Q) bound (55) on vT,∆t ensure the equi-integrability of the
functions b(vT,∆t(· − ∆t)) on Q. Now for any measurable set E ⊂ Q, for all
δ > 0,

∫∫

E

|b(vT,∆t(· − ∆t)) vT,∆t(·)| ≤ 1

δ

∫∫

E

b(vT,∆t(· − ∆t))

+ δ

∫∫

Q

b(vT,∆t(· − ∆t, x))
∣∣vT,∆t(·)

∣∣2.

Thus estimate (54) and the aforementioned equi-integrability of b(vT,∆t(·−∆t))
ensure the equi-integrability of the ionic current term hT,∆t(·). In particular,
from (26) we infer L1(Q) bounds on the components of the discrete function
hT,∆t:

N∑

n=0

∆t
(
‖hMo,n+1‖L1(Ω) + ‖hM∗,n+1‖L1(Ω)

)
≤ C,

for version (C), the term on M� is also controlled. At this stage, the full
strength of Proposition 5 is put into service: indeed, we only have the L1

control of the right-hand side of the discrete evolution equations (22). We
infer the strong L1(Q) convergence (along a sub-sequence) for vT,∆t. Then
from the Vitali theorem and the fact that vT,∆t(·−∆t)− vT,∆t(·)→ 0 in L1(Q)
and a.e., we get the strong convergence of hT,∆t(·) to h(v).

Steps 6 and 7. The arguments remain unchanged, taking into account (53).

6 Numerical experiments

We have implemented the method (B) of 3D DDFV approximation of the
bidomain equations. For a comparison of the different strategies in the most
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appropriate context (the one of linear anisotropic elliptic diffusion problems
on general meshes), we refer to [37] and [9, 26, 28].

For the numerical simulations, the bidomain problem (1) is reformulated in
terms of v and ue only; the elimination of ui, thanks to the relation v = ui−ue,
decreases the number of unknowns per primal/dual volume from three to two.

In terms of v and ue, the parabolic type problem (1) is turned into the
following elliptic-parabolic problem:

{
div (Me(x) + Mi(x))∇ue + div Mi(x)∇v = 0 (t, x) ∈ Q,

ε∂tv + ε2div Me(x)∇ue + h[v] = Iapp (t, x) ∈ Q. (57)

For ε = 1, problem (57) is equivalent to the original problem (1); indeed,
the first line in (57) results from the summation of the two lines in (1), with
ui = v+ ue. The bidomain problem will be considered under formulation (57)
throughout this section. We point out that numerical schemes associated with
formulation (57) are equivalent with numerical schemes for the formulation
(1), following the same algebraic operations on the discrete equations.

A scaling parameter ε has also been introduced in (57). Its presence
clearly makes no difference for the mathematical study of the previous sec-
tions, but it greatly helps the solutions of (57) to behave as excitation poten-
tial waves (which waves (57) is supposed to model). More precisely, following
the analysis in [20], such a scaling parameter together with a cubic shape for
h[v] := v(v − 1)(v − α) provide a simplified model for spreading of excitation
in the myocardium; the parameters ε and α have been set respectively to 1/50
and 0.2. The way excitation waves are generated is detailed in Subsection 6.1.

The convergence of the DDFV space discretisations for the bidomain prob-
lem has been justified in Theorem 3 for two different discretisations (the fully
implicit in time and the linearised semi-implicit one) of the ionic current term.
Here we complement these theoretical studies by the numerical experiments
on the third (and the most important in practice) case of fully explicit in time
discretisation of the ionic current term. The implementation of the scheme is
detailed in Section 6.2. Although the theoretical study of this scheme is made
difficult for technical reasons, we do observe convergence numerically.

The convergence result in Theorem 3 involves a comparison between the
exact solution and the discrete solution in the L2(Q) norm, the discrete solu-
tion being interpreted as the weighted sum of two piecewise constant functions
(on the primal and on the dual cells). The practical computation of this L2

distance is difficult. Namely, a (coarse) numerical solution on a given (coarse)
mesh has to be compared with a second (reference) numerical solution com-
puted on a reference mesh aimed to reproduce the exact solution, unknown in
practice. The reference mesh will not be here a refinement of the coarse one,
thus the precise computation of an L2 norm between the coarse and the refer-
ence numerical solutions, thought as piecewise constant functions, is an awful
task. Therefore we use a slightly different convergence indicator, as presented
in Section 6.3. The quantity (63) provides a more convenient measure of the
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square of the L2(Q) norm. The convergence with respect to this variant of
discrete L2 norm will be studied here. Notice that under reasonable regularity
assumptions on the mesh, the two discrete L2 norms are equivalent.

Convergence will be studied both in 2D and in 3D. The introduction of the
two dimensional case is mostly intended to confirm the results in dimension
three: because of the numerical facilities in dimension two (smaller growth of
the problem size under refinement), it allows a deeper insight into the asymp-
totic behaviours.

6.1 Settings

Problem (57) is considered for a reaction term v 7→ h[v] set on the domain
Ω = [0, 1]d, d = 2, 3 denoting the space dimension. We consider solutions
under the form of excitation potential waves spreading from the domain centre
towards its boundary, as depicted in Figure 3 in the two dimensional case,
relatively to some medium anisotropy detailed below.

Figure 3: Reference solution in the two-dimensional case. Above: spreading of
the transmembrane potential v excitation wave. From left to right, the three
pictures correspond to times t=0.2, 0.6 and 1.2 after the stimulation initiation,
stimulation duration being 0.1. Below: associated extracellular potential ue.

Excitation is initiated by applying a centred stimulation during a short
period of time, precisely: Iapp(x, t) = 0.9 for 1 < t < 1.1 and |x−x0| < 0.1 (x0

denoting the centre of Ω) and Iapp(x, t) = 0 otherwise. The initial condition
for v is uniformly set to 0. A homogeneous Neumann boundary condition is
considered on ∂Ω, uniqueness is ensured by adding the normalisation condition
(4) on ue. The domain Ω is assumed to be composed of a bundle of parallel
horizontal muscular fibres, resulting in the following choice for the anisotropy
tensors Mi(x) and Me(x):

Mi(x) = Diag(λli, λ
t
i, λ

t
i) , Me(x) = Diag(λle, λ

t
e, λ

t
e) , (58)

the values for the longitudinal (l) and transverse (t) conductivities for the intra
and extra-cellular medias have been taken from [52]: the resulting anisotropy
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ratios for the intra and extra-cellular medias respectively are 9.0 and 2.0 be-
tween the longitudinal and transverse directions.

The numerical solution for the transmembrane potential v takes the form
of an excitation wave propagating across the domain from the stimulation site
towards the boundary and from the rest potential v = 0 to the activation
potential v = 1. A sharp but smooth wavefront for v displays an elliptic
shape away from the boundary, which is induced by the media anisotropy. A
reference solution is generated on a mesh using a 1 147 933 (resp. 479 873)
nodes in dimension 3 (resp. 2).

6.2 Implementation

Let us fix a mesh T. For simplicity, discrete functions w, v ∈ RT will also
be considered as one-column real matrices in this subsection, wT , vT denoting
their transpose one-row real matrices. Let us first introduce the mass matrix
(diagonal here) Λ ∈ Mat(RT):

∀ w, v ∈ RT :
[[
w, v

]]
Ω

= wTΛv.

Relative to (58), uniform discrete tensors MT
i,e are considered here, with value

MT

i = Diag(λli, λ
t
i, λ

t
i) , MT

e = Diag(λle, λ
t
e, λ

t
e) ,

on each diamond D. The discrete gradient being defined relative to the homo-
geneous Neumann boundary condition, and simply denoted by ∇T, the two
stiffness matrices Σi and Σe are introduced as:

∀ w, v ∈ RT :
{{

MT

i ∇Tv, ∇Tw
}}

Ω
= vTΣiw,

{{
MT

e ∇Tv, ∇Tw
}}

Ω
= vTΣew.

These stiffness matrices are positive, symmetric matrices, although not definite
since a Neumann homogeneous boundary condition is considered.

The following semi-implicit Euler scheme is considered: given vn, Inapp ∈ RT,
determine vn+1, un+1

e ∈ RT such that,





div T[(MT

e + MT

i )∇Tun+1
e ] + div T

[
MT

i ∇Tvn+1
]

= 0,

ε
vn+1 − vn

∆t
+ ε2div T[MT

e ∇Tun+1
e ] + h[vn] = Inapp.

(59)

Writing separately the scalar product
[[
·, ·
]]

Ω
of each line in (59) with all test

functions w ∈ RT and using the discrete duality (11) leads to the following
equivalent formulation written in matrix form:

M

∣∣∣∣∣∣

un+1
e

vn+1
=

∣∣∣∣∣∣

0

Λ[vn + ∆t(Inapp − h[vn])/ε]
, M :=

[
Σi + Σe Σi

−ε∆tΣe Λ

]
. (60)
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To ensure uniqueness on ue, the normalisation condition (4) is discretised as:

[[
un+1
e , UMo

]]
Ω

= 0 =
[[
un+1
e , UM∗

]]
Ω
, (61)

where UMo
(resp. UM∗) is the discrete function equal to 1 relatively to each

primal (resp. dual) control volumes and to 0 elsewhere.
The implementation of (60) therefore reads as a three-step algorithm:
at each time step,

1. compute y2 := Λ[vn + ∆t(Inapp − h[vn])/ε]. The matrix Λ being diagonal,
computations for this step are cheap;

2. determine a solution x = (un+1
e , vn+1)T to the global system Mx = y for

y = (0, y2)T ;

3. normalise un+1
e using condition (61). For the same reason as for step one,

this step is a cheap one.

Because of the large size of the considered problem (1.1 million of nodes
in 3D for the most refined mesh, i.e. 2.2 million of lines for the matrix M)
and because of the relatively non-compact sparsity pattern for M in 3D, step
2 is not an easy task. Therefore, a careful attention has to be paid to the
preconditioning of M : the strategy adopted here is detailed in [60].

6.3 Numerical tests and results

The convergence of the DDFV scheme is numerically analysed comparing the
reference solution described in Subsection 6.1 with numerical solutions ob-
tained on coarser meshes. In 3D, four tetrahedral meshes have been consid-
ered: from 2 559 to 1 147 933 nodes, between two meshes the mesh size is
divided by 2, two successive meshes are not obtained via refinement. In 2D,
six meshes are used: from 489 to 479 873 nodes. The time step ∆t is also
divided by two each time the space resolution is divided by 2; the starting
time step (on the coarsest mesh) is 0.02.

To compare numerical solutions defined on different meshes, a projection
is needed: this is done as follows. Let Tr and Tc be the reference mesh and a
coarser mesh respectively, and let RTr , RTc respectively denote the associated
spaces of discrete functions. Consider the simplicial mesh Sr (respectively Sc)
whose cells are obtained by cutting all diamonds of Tr (resp. Tc) in two along
the interface. A discrete function ur ∈ RTr (resp. uc ∈ RTc) consists in one
scalar associated to each vertex and each cell centre of the mesh Tr (resp. Tc),
thus to each vertex of Sr (resp. Sc). It is therefore natural to associate to uc

(resp. ur) the continuous function ũr (resp. ũc) piecewise affine on the cells
of Sr (resp. Sc) and whose values at the vertices of Sr (resp. Sc) are given
by the discrete function ur (resp. uc). A projection uc→r ∈ RTr of a (coarse)
discrete function uc ∈ RTc is then simply defined by computing the values of
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the function ũc on the vertices of Sr. The relative error between ur ∈ RTr and
uc ∈ RTc in L2(Ω) norm is defined as

eΩ,2(ur, uc)2 :=

∫
Ω
|ũr − ũc→r|2dx∫

Ω
|ũr|2dx . (62)

Numerically, these integrals are evaluated using an order two Gauss quadrature
on the cells of Sr, leading to an exact evaluation up to rounding errors.

The three following tests have been performed.

6.3.1 Test 1; activation time convergence

Figure 4: Activation time in dimension 2 for three different meshes, the isolines
(in black) are separated by 1/3 unit of time. The stimulation is initiated at
time t = 1. From the left (coarsest mesh) to the right (reference solution) the
three different activation time mappings have been computed on meshes with
439, 7569 and 479 873 nodes respectively.

The activation time mapping ϕ : Ω 7→ R is defined at each point x as
the time ϕ(x) = t such that the transmembrane potential v(x, t) = s for the
threshold value s := 0.9. The value ϕ(x) tells us at what time the excitation
wave reaches the point x, the activation time mapping thus is of crucial impor-
tance in terms of physiological interpretation of the model. Activation time
in 2D computed on various meshes are depicted on Figure 4. The discrep-
ancy between the activation mappings ϕr and ϕc computed at the reference
and coarse levels respectively is evaluated using the relative error in the L2(Ω)
norm defined in (62). Numerical results for activation time convergence are
given in Table 1.

Convergence is numerically observed here both in 2D and in 3D. In di-
mension 2, the convergence rates clearly indicate an order one convergence
relatively to the number of nodes (degrees of freedom). In dimension 3, a sim-
ilar order one convergence also seems to be a readonable assumption; however
such a conclusion has to be precised considering finer grids which is not afford-
able in terms of computational effort. In terms of mesh size, the convergence
is of order 1/d eith d the dimension only.
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# nodes errors Conv.
eΩ,2 rate

489 1.611
1913 9.130 10−2 -2.10
7 569 1.776 10−2 -1.19
30 113 4.850 10−3 -0.94
120 129 1.139 10−3 -1.05
479 873 reference

# nodes errors Conv.
eΩ,2 rate

2 559 1.110
19 500 8.195 10−2 -1.28
148 242 1.281 10−2 -0.91
1 147 933 reference

2D case 3D case

Table 1: Activation time mappings convergence. The errors are relative errors
in L2(Ω) norm as defined in (62). The convergence rates are reported with
respect to the number of nodes (degrees of freedom).

6.3.2 Test 2; space convergence

Let us denote by vr and ure, (resp. vc and uce) the transmembrane potential
and extracellular potential computed on the reference mesh (resp. a coarse
mesh). The discrepancy between vc, vr and ure, u

c
e at a chosen time t has been

computed using the relative error in the L2(Ω) norm (62). Three fixed times
t have been considered: t = 1.2, 1.6 and 2.2, corresponding to the reference
solution depicted in Figure 3.

Because of the particular wavefront-like shape of the solution, this error can
be geometrically reinterpreted as follows. Consider at time t the sub-region
of Ω that is activated according to the reference solution ure but not activated
according to the coarse solution uce. The numerator in (62) simply measures
the square root of the area of this sub-region. Using the elliptic shape of acti-
vated regions, one gets that eΩ,2(ur, uc) measures the square root of the relative
error on the wavefront propagation velocity (more precisely the square root of
the sum of the axial and transverse wavefront propagation velocities relative
errors). This error, as in test case 1, is of prime physiological importance.
Numerical results for this test are displayed in Tables 2 and 3. Although con-
vergence is well illustrated, no particular asymptotic behaviour can be inferred
from these results.

6.3.3 Test 3; space and time convergence

A numerical space and time convergence indicator eQ,2 is introduced here,
aiming to reproduce an L2(Q) relative error between a coarse and the reference
solution (Q = (0, T )× Ω). Convergence is measured using this indicator, and
this third test therefore is intended to numerically illustrate the convergence
result of Theorem 3.

The transmembrane potentials vr and vc have been recorded at the same
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# nodes errors eΩ,2 on v Convergence rate on v.

489
1 913
7 569
30 113
120 129

t = 1.2 t = 1.6 t = 2.2
0.51 0.37 0.45
0.24 8.87 10−2 0.14
0.13 6.01 10−2 1.42 10−2

6.24 10−2 3.29 10−2 1.28 10−2

1.25 10−2 5.26 10−3 1.74 10−3

-0.55 -1.05 -0.86
-0.45 -0.28 -1.66
-0.53 -0.44 -0.08
-1.16 -1.33 -1.44

2D case

# nodes errors eΩ,2 on v Convergence rate on v.

2 559
19 500
148 242

t = 1.2 t = 1.6 t = 2.2
0.43 0.57 0.65
0.22 0.14 0.20
0.10 6.21 10−2 2.88 10−2

-0.33 -0.69 -0.58
-0.39 -0.40 -0.96

3D case

Table 2: Convergence of the transmembrane potential v at three fixed times:
t = 1.2, 1.6 and 2.2. The reference solution for these chosen times are depicted
in Figure 3 and computed on the finest grid with 479 873, 1 147 933 nodes in
dimension 2, 3 respectively. Errors are relative errors in L2(Ω) norm as defined
in (62). The convergence rates are reported with respect to the number of
nodes (degrees of freedom).
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# nodes errors eΩ,2 on ue Convergence rate on ue.

489
1 913
7 569
30 113
120 129

t = 1.2 t = 1.6 t = 2.2
0.45 0.34 0.59
0.22 8.27 10−2 0.17
0.12 5.38 10−2 1.99 10−2

5.62 10−2 2.89 10−2 1.71 10−2

1.13 10−2 5.31 10−3 2.86 10−3

-0.52 -1.04 -0.91
-0.44 -0.31 -1.56
-0.55 -0.45 -0.17
-1.16 -1.22 -1.29

2D case

# nodes errors eΩ,2 on ue Convergence rate on ue.

2 559
19 500
148 242

t = 1.2 t = 1.6 t = 2.2
0.42 0.63 0.91
0.19 0.17 0.28
9.45 10−2 6.40 10−2 4.33 10−2

-0.39 -0.65 -0.58
-0.34 -0.48 -0.92

3D case

Table 3: Convergence of the extra cellulat potential ue at three fixed times:
t = 1.2, 1.6 and 2.2. The reference solution for these chosen times are depicted
in Figure 3 and computed on the finest grid with 479 873, 1 147 933 nodes in
dimension 2, 3 respectively. Errors are relative errors in L2(Ω) norm as defined
in (62). The convergence rates are reported with respect to the number of
nodes (degrees of freedom).

# nodes errors Conv.
eQ,2 rate

489 0.481
1913 0.237 -0.52
7 569 6.469 10−2 -0.94
30 113 1.746 10−2 -0.95
120 129 4.167 10−3 -1.04
479 873 reference

# nodes errors Conv.
eQ,2 rate

2 559 0.673
19 500 0.219 -0.55
148 242 4.920 10−2 -0.74
1 147 933 reference

2D case 3D case

Table 4: Space and time convergence for the transmembrane potential v. Er-
rors are relative errors in the L2(Q) norm as defined in (63). The convergence
rates are reported with respect to the number of nodes (degrees of freedom).
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times, namely tn = nδt, for δt = 1/100 unit of time, n = 0, . . . , T/δt and
T = 3. The corresponding numerical solutions are denoted vrn and vcn. A
relative error in the L2(Q) norm between vr and vc is introduced as follows:

eQ,2(vr, vc)2 :=

∑N
n=0

∫
Ω
|ṽnr − ṽnc→r|2dxδt∑N

n=0

∫
Ω
|ṽnr|2dxδt

, N = T/δt. (63)

Numerical results are given in Table 4: convergence both in 2D and in 3D is
observed. The two dimensional case results indicate an order one convergence
with respect to the number of nodes. Such a conclusion cannot be drawn in
dimension 3: it would require much finer grids and so non affordable compu-
tational efforts, as already mentioned relatively to the first test case.
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du second ordre (French), C. R. Math. Acad. Sci. Paris Sér. I, 326(12)
(1198), 1433–1436.

[43] F. Hermeline, A finite volume method for the approximation of diffusion
operators on distorted meshes, J. Comput. Phys., 160(2) (2000), 481–499.





B. Andreianov, M. Bendahmane, K. Karlsen and C. Pierre

[44] F. Hermeline, A finite volume method for solving Maxwell equations in
inhomogeneous media on arbitrary meshes, C. R. Math. Acad. Sci. Paris
Sér. I, 339(12) (2004), 893–898.

[45] F. Hermeline, Approximation of 2D and 3D diffusion operators with dis-
continuous full-tensor coefficients on arbitrary meshes, Comput. Methods
Appl. Mech. Engrg., 196(21-24) (2007), 2497–2526.

[46] F. Hermeline, A finite volume method for approximating 3D diffusion
operators on general meshes, J. Comput. Phys., 228(16) (2009), 5763–
5786.

[47] A.L. Hodgkin and A.F. Huxley, A quantitative description of membrane
current and its application to conduction and excitation in nerve, J.
Physiol., 117(4) (1952), 500–544.

[48] J. Keener and J. Sneyd, “Mathematical Physiology”, Vol. 8 of Interdis-
ciplinary Applied Mathematics, Springer, New York, 1998.

[49] S. Krell, Stabilized DDFV schemes for Stokes problem with variable vis-
cosity on general 2D meshes, Num. Meth. PDEs, (2010)

[50] S. Krell and G. Manzini, The Discrete Duality Finite Volume method for
the Stokes equations on 3D polyhedral meshes, HAL preprint (2010)

[51] S.N. Kruzhkov, Results on the nature of the continuity of solutions of
parabolic equations and some of their applications, Mat. Zametki 6(1)
(1969), 97–108; english tr. in Math. Notes 6(1) (1969), 517-523.

[52] P. Le Guyader, F. Trelles, and P. Savard, Extracellular measurement
of anisotropic bidomain myocardial conductivities. I. theoretical analysis,
Annals Biomed. Eng., 29(10) (2001), 862–877.

[53] G.T. Lines, P. Grottum, A.J. Pullan, J. Sundes, and A. Tveito, Mathe-
matical models and numerical methods for the forward problem in cardiac
electrophysiology, Comput. Visual. Sci., 5 (2002), 215–239.

[54] G. Lines, M.L. Buist, P. Grøttum, A.J. Pullan, J. Sundnes, and A. Tveito,
Mathematical models and numerical methods for the forward problem in
cardiac electrophysiology, Comput. Visual. Sci., 5(4) (2003), 215–239.

[55] J.-L. Lions and E. Magenes, “Problèmes aux Limites non Homogènes et
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