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Université de Nantes, France.
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Abstract

This paper proposes a thorough investigation of the convergence of
the volume averaging method described in [36] as applied to convection-
diffusion problems inside a cylinder. A spectral description of volume
averaging brings to the fore new perspectives about the mathemati-
cal analysis of those approximations. This spectral point of view is
complementary with the Liapounov-Schmidt reduction technique and
provides a precise framework for investigating convergence. It is shown
for convection-diffusion inside a cylinder that the spectral convergence
of the volume averaged description depends on the chosen averaging
operator, as well as on the boundary conditions. A remarkable re-
sult states that only part of the eigenmodes among the infinite discrete
spectrum of the full solution can be captured by averaging methods.
This leads to a general convergence theorem (which was already exam-
ined with the use of the centre manifold theorem [22] and investigated
with Liapounov-Schmidt reduction techniques [11] in similar contexts).
Moreover, a necessary and sufficient condition for an eigenvalue to be
captured is given. We then investigate specific averaging operators, the
convergence of which is found to be exponential.
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Introduction

Volume averaging techniques are widely used to model transport problems
for which decoupled or separated scales can be identified. The first part of
this introduction deals with the potential interest of volume averaging for
convection-diffusion problems in different applications. In the second part we
discuss the interest and the specificity of volume averaging as compared to
other homogenization methods. This general discussion is developed in the
paper in a specific case suitable for mathematical treatment: the problem of
convection-diffusion in a circular tube.

Convection-diffusion inside a tube would seem to be a simple mathematical
problem. It turns out that it is a non-trivial problem, well-known in the history
of applied mathematics. Starting from Graetz [16] and Lévêque [19] in the
stationary case, it has more lately interested Taylor [35] and Aris [1] in the
context of its transient non-stationary asymptotic behaviour. These seminal
works have inspired many others, some of which are discussed in the second
part of the introduction when discussing the methodological point of view.

Many research areas such as chemical engineering, bio-mechanics, porous
media, are interested by variants of such a simple generic convection-diffusion
problem. For example, when the considered problem involves many tubes in-
side which convection occurs (such as heat exchangers, or micro-vascular beds),
transport equations have been sought in terms of cross-section averaged fields
[7, 18, 24, 38, 23]. Recently, the design and optimisation of micro heater ex-
changers has stimulated the search for averaged equations governing averaged
temperature either at the tube scale, or at the scale of the whole exchanger
[38, 23]. In the context of heat exchange in biological tissues, averaged de-
scriptions have remained very useful models [25] since the pioneering Pennes’s
model [27, 2, 3]. These investigations suggest that averaged temperature asso-
ciated with “compartmental” domains such as tissues and blood flow in vessels
are interesting quantities to consider in order to model heat exchanges inside
bodies. In these cases it is crucial to understand how the micro-scale flow
may be approximated by averaged models because, even if possible, a detailed
description of the full stationary problem at the local scale of each tube is not
of great interest. In the context of these applications, averaged models have
proved to be useful and interesting for applied concerns. Nevertheless, even if
the description of averaged quantities is useful in practise for obvious opera-
tional reasons, there are still numerous questions concerning the validity and
the quality of the approximation given by these ad-hoc models. As a matter
of fact, even if the model predictions could be in retrospect tested numerically,
it is always interesting to better understand what their mathematical founda-
tions are. This allows one to better understand their limits and their possible
extensions. In this paper, we investigate the model of stationary convection-
diffusion inside a tube. This study shows that, in this particular context, an
averaged description can only capture large scale features of the exact solution,
the convergence of which can be made as precise as necessary.
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From a methodological point of view, spatial averaging is at first used as an
operational definition of macro-scale quantities. From this, macro-scale equa-
tions may be derived, and the reader is referred to the paper [12] for a review of
the different perspectives and points of view. For example, macro-scale equa-
tions are introduced by many authors from extensive use of irreversible thermo-
dynamics [17] (this approach is also often called mixture theory). In this paper,
we are interested in methods that provide a direct, deterministic link, through
some mapping variables, between the micro-scale and the macro-scale fields.
Such a method has been applied to determine macro-scale transport equations
for porous media applications, as illustrated in [36] whilst concomitantly a very
similar approach has been proposed by Brenner [9]. Many characteristics and
assumptions of the cited methods are close to other macroscopisation methods,
such as homogenization theory [6, 33]. Indeed, the general agreement between
both methods has been described for diffusion problems in [8]. The major
features may be summarised in the following terms:

• The macroscopic characteristic scales are supposed to be decoupled from
the microscopic ones, each level having its own variable description.

• The Initial Boundary Value Problem (IBVP) that determines the micro-
scale fields is solved in an approximated manner in terms of the macro-scale
variables and some mapping variables. The approximation is materialised by
micro-scale problems or closure problems that completely define these map-
ping variables.

• Having solved these micro-scale problems, the macroscopic mathemati-
cal description is essentially dependent on the estimation of macroscopic coef-
ficients or effective coefficients that are explicitly given in terms of averages of
the mapping variables.

One feature of the considered volume averaging method is, therefore, that
some additional hypotheses are needed in order to simplify the original problem
and relate the micro-scale fields to the macro-scale ones. These additional rela-
tions, which we called “closure relations”, are problem dependent, and must be
consistent with the assumption made of separated scales. This feature is com-
mon to almost all homogenisation methods. For example, asymptotic methods
are based on regular asymptotic expansions for inner (micro-scale) and outer
variables (macro-scale) to be specified, the scaling of which has to be care-
fully evaluated by order of magnitude analysis of the relevant parameters [21].
Another method involving scales is the time-scale separation between master
and slave modes based on centre manifold description [30]. This method has
been used to provide a general and rigorous treatment of Taylor dispersion
[20, 22, 37, 4, 28, 10, 31, 5]. This method shares many features with the one
examined in this paper, beside a more general background and different ob-
jectives. One important starting point for this method is to use steady state
solutions as decomposed into a discrete and infinite set of eigenfunctions. Ex-
amining a linear problem, the temporal solution are then linearly decomposed
into those stationary eigenmodes, i.e each stationary eigenmode is associated
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with a non-stationary one. Among those, the one associated with the trivial
zero eigenvalue is called the master mode because it is associated with slow
temporal relaxations of interest for long-time asymptotic behaviour. The other
temporal modes fulfil fast temporal relaxations whose influence on the master
mode can be re-cast into the master equation parameters. The coupling be-
tween slave and master modes is obtained from a linear decomposition strictly
similar to the above mentioned “closure relations”. These closure relation are
derived from a Lyapunov-Schmidt reduction [4, 5] associated with a small pa-
rameter which is the product between the Péclet number and the aspect ratio
of the considered tube.

The general philosophy of this master/slave time separation method is then
much similar to the one applied in this paper on the spatial level. In the case of
volume averaged methods, far-field spatial asymptotic behaviour (sometimes
called “fully developed” spatial variations) are interesting in that they describe
the evolution of a simple one-dimensional macroscopic field, without requiring
of a precise description of supplementary spatial variations. There is never-
theless one major technical difference with the goal pursued in this paper. In
the case of the master/slave time separation method, the invariant manifold
theorem gives a nice framework for the validity of such slow/fast mode de-
composition close to any trivial zero eigenvalue [22] (because the time scales
separation is governed by the ratio of the fast to slow modes eigenvalues).
This framework can be easily transposed for spatially decaying mode close to
a trivial zero eigenvalue [4]. Those zero eigenvalue macroscopic modes might
be interesting, especially when the problem has Neumann boundary condi-
tions. In this case, direct Liapounov-Schmidt reduction techniques have been
used to assess the convergence of averaging models, for example, when chem-
ical reaction occurs within the fluid [11]. In section 4.1 we will compare our
results with those obtained in [11] that are re-discussed in the third section
of [5]. Those zero eigenvalue macroscopic modes are nevertheless less inter-
esting in transfer problems. In that case they are associated with a spatially
uniform eigenmode whose contribution to the transfer between the tube wall
and the fluid is zero. Other non-trivial spatially decaying eigenmodes should
then be sought. This is especially true when boundary conditions are not of
Neumann type, so that there is no trivial zero eigenmode. But, in this case,
the invariant manifold theorem hardly guarantees the validity and accuracy of
a slow/fast scale decoupling. One of the purposes of this paper is to re-examine
the conditions for which a macro/micro decoupling is a sensible approach in
the case of a simple convection-diffusion problem, with general boundary con-
ditions. In this sense, the presented analysis extend previous works [11, 5]
which have used Liapounov-Schmidt reduction techniques close to a 0 eigen-
mode. Our analysis considers the approximation of non-zero eigenmodes with
non-self-adjoint operators. Whilst restricted to a given convection-diffusion
problem, this paper examines the precise conditions for which a part of the
exact solution can be captured by an averaged model. One important con-
clusion, for applications purposes, that is drawn from the proposed analysis
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is that, depending on the chosen averaging method (more precisely depending
on the applied weighting function), the non-trivial, interesting eigenmodes can
not always be captured. It is therefore of great interest to know better what
causes averaging for convection-diffusion problems to work and why.

Moreover, there is an additional interest in our analysis for those willing
to use averaged models. Macro-scale equations, as generally introduced in the
literature [36], come from first order terms. The ”quality” of the first order ap-
proximation is often checked through some comparison with direct simulations,
or analytical solutions of the micro-scale equations, or by developing estimates
for the higher order terms. It is often difficult to have a precise quantitative
determination of those terms, and the first approach, if available, is a valuable
information. In a preliminary study of the tube problem, it was found that
the approximation proposed by [29] would provide a reasonable estimate of
the exchange term for the established regime in the case of diffusion/advection
in a tube with constant temperature or concentration at the surface [15]. The
objective of this paper is to exhibit a higher order analysis of the problem from
which convergence proofs can be obtained so that a posteriori conditions are
found for the definition of the macroscopic scale.

The paper is organised as follows. The second section reviews convection-
diffusion problem in the stationary case, and describes its known solutions.
A short review of the results obtained with the volume averaging method is
also presented in this section to further document the general context of the
study. The third section presents a generalisation of the volume averaging
method previously used to describe temporal variations [4, 5]. This leads to a
precise formulation of the mathematical convergence to any eigenmode. The
fourth section presents the convergence proof in a two-step procedure. Some
numerical results associated with the the convergence of different averaging
operators are presented at the end of this section.

1 General background

1.1 Convection-diffusion problem

The material exposed in this section closely follows classical steps that may
be find in textbooks, see for instance [13]. We first present the dimension-
less formulation associated with convection-diffusion of a passive scalar inside
a cylinder, with radial coordinate r made dimensionless by the tube radius
R. This passive scalar could be associated, for instance, with some heat or
mass transfer problem, and we will refer to it as T (r, ϕ, z). Classicaly, the
ratio between convection to diffusion characteristic times is associated with a
dimensionless Péclet number Pe = 〈v〉R/Dm, where Dm is the diffusion co-
efficient of the passive tracer in the liquid, and 〈v〉 is the spatially averaged
velocity field. The physical problem giving the convection velocity is supposed
to be independent of the passive scalar, so that a translation-invariant fully
developed flow v(r) settles in the longitudinal direction z along the cylinder
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principal axis. Making dimensionless the longitudinal direction z by the tube
radius R, the stationary governing equation expressing heat – or mass – con-
servation of the passive scalar T (r, z) reads:

∆T = Pev(r)∂zT , with v(r) ≥ 0 analytical in 0 , (1)

where ∆ stands for the Laplace operator, which will be appropriately expressed
in cylindrical coordinates. As discussed later, we will be mainly interested in
situation where Pe ≫ 1. Nevertheless, it is important to note that other defi-
nitions of the dimensionless variable in the z direction could be adopted. As a
matter of facts, the typical longitudinal variations are linearly increasing with
the Péclet number when Pe ≫ 1, and, furthermore, the longitudinal dimen-
sions of the tube could be much larger than its radius. Hence, many authors
among which [4, 5] prefer to introduce an additional parameter pe = PeR/L
where L is some longitudinal characteristic length associated with the axial
variations. In this context, many studies such as the classical ones [35, 1]
have been interested in the limit of pe ≪ 1, while Pe ≫ 1 so that longitudi-
nal diffusion can be neglected in comparison with transverse diffusion. This
choice is important when considering the averaged description of equation (1),
which should then be written with a small parameter pe instead of a large
parameter Pe on the right hand side. In the following, we will keep using the
Péclet number Pe parameter for the problem. Of course, this choice should
give equivalent results as those obtained from the use of the small parameter
pe, as will be explained in section 4.1.
In the case of a Newtonian fluid, the velocity field develops a parabolic Poiseuille
flow v(r) = 2(1− r2). Because its particular importance, all the numerical re-
sults will be given in this case. However all the theoretical results obtained
in this paper still hold for general nonnegative velocity fields v(r) ≥ 0 that
are analytical in 0. General velocity profiles are of interest for applications
associated with non-Newtonian fluid, such as for example blood for which dif-
ferent analytical model have been proposed for the velocity profile in a tube
[14]. This can also be useful in the treatment of turbulent dispersion in tubes,
for which the Poiseuille solution is replaced by the turbulent average velocity
field, following the double averaging procedure in Pedras and Lemos (2001)
[26].
Because of its relevance to many research areas, this partial differential prob-
lem has received much attention. Three basic classes of boundary conditions
are naturally associated with this cylindrical geometry: adiabatic Neumann
boundary condition ∂rT (r = 1, ϕ, z) = 0 – we shall refer to it as N in the fol-
lowing –, constant temperature Dirichlet boundary condition T (r = 1, ϕ, z) =
0 – we shall refer to it as D in the following – or mixed Robin boundary con-
dition ∂rT (r = 1, ϕ, z)+ γT (r = 1, ϕ, z) = 0 where γ > 0 may be called Thiele
modulus by reference to the case of heterogeneous reaction – we shall refer to it
as R in the following. Furthermore, the passive scalar reference value is chosen
so that, far away from the origin, it reaches its equilibrium state, T (r,∞) = 0.
The only missing boundary condition is the initial value of the scalar field





Convergence of volume averaging method

at the cylinder origin z = 0, T (r, 0) ≡ T0(r), which has to be specified. It
is easy to note that the PDE problem (1) is not tensorized, so that it does
not independently factorise the radial coordinate r and the longitudinal one z.
Whilst very simple, the linear problem (1) does not have any explicit general
solution. Hence, many authors have been interested in the special limit for
which a variable separation can be found. In the limit of large Péclet number,
Pe ≫ 1, when neglecting the longitudinal diffusion compared to the radial one,
equation (1) degenerates to:

(

∆c +
1

r2
∂2ϕ

)

T = Pev(r)∂zT , (2)

where ∆c stands for the cylindrical part of the Laplace operator ∆c ≡ 1/r∂r(r∂r),
and ϕ is the azimuthal angle. It can be shown that such an approximation is
O(1/Pe2), because in this limit, the longitudinal typical variations scale lin-
early with Pe [13]. Equation (2) associated with either Neumann N , Dirichlet
D or Robin R boundary conditions, is then a separable problem, for which
the PDE degenerates into a Sturm-Liouville ODE problem. Graetz [16] has
found that its general solution is associated with the discrete sets LN , N ∈ Z,
of eigenvalues depending on the boundary condition:

T (r, ϕ, z) =
∑

N∈Z

∑

l∈LN

cN,lGN,l(r)e
iNϕe

l
Pe

z , (3)

We define the generalised Graetz functions GN,l as the functions of r that
satisfy:







(

∆c − N2

r2

)

GN,l = lv(r)GN,l

GN,l(r)

rN
(r = 0) = 1

, (4)

with D : GN,l(1) = 0 or N : ∂rGN,l(1) = 0 or R : GN,l(1) + γ∂rGN,l(1) = 0.
For a general – analytical in 0 – velocity field v(r) one can use the Frobenius
method (Cf e.g. [32]) to see that the following equation:

(

∆c −
N2

r2

)

y = lv(r)y ,

which is singular in zero, has two linearly independent solutions y1 and y2; the
first one regular in 0 satisfies y1(r)/r

N(r = 0) 6= 0, and the second one being
singular in 0: y2(0) = ±∞. As a result, the equation (4) with initial condition
GN,l/r

N(r = 0) = 1 defines a unique functionGN,l –that we will call generalised
Graetz function – for each l ∈ C and N ∈ Z. Thus the following conditions in
(4), GN,l(1) = 0 for D, ∂rGN,l(1) = 0 for N , or GN,l(1) + γ∂rGN,l(1) = 0 for
R only selects among these generalised Graetz functions those satisfying the
correct boundary condition.
Historically, the cylindrical Graetz functions G0,l has been associated with a
parabolic Poiseuille flow v(r) = 2(1− r2) and it is usually found in the litera-
ture that the function G0,l is the eigenfunction of

√
−l rather than l. However
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this notation will be kept for the sake of simplicity in the rest of the paper, and
Appendix A gives a more detailed discussion of Graetz eigenfunction and their
relations with confluent hyper-geometric functions –or Kummer’s functions.
Because (4) defines a self-adjoint Sturm-Liouville problem, the eigenvalues
associated either with the Dirichlet, Neumann or Robin conditions are real.
Moreover, the chosen far-field extinction boundary condition T (r,∞) = 0
selects, among those, negative eigenvalues. LN is therefore a discrete set
LN ⊂ R

− of ordered eigenvalues LN = {· · · < li,N < · · · < l1,N < l0,N ≤ 0}.
For convenience, we will use a specific notation for the sets associated with
Dirichlet, Neumann or Robin boundary conditions, i.e:

LD
N =

{

l ∈ R
−, GN,l(1) = 0

}

, LN
N =

{

l ∈ R
−, ∂rGN,l(1) = 0

}

or LR
N =

{

l ∈ R
−, GN,l(1) + γ∂rGN,l(1) = 0

}

. (5)

lDi,N i = 0 i = 1 i = 2

N = 0 -3.656793458 -22.30473055 -56.96051540
N = 1 -10.69115115 -37.38965286 -80.07477640
N = 2 -21.24944651 -56.05580310 -106.8036412
N = 3 -35.46611328 -78.38573690 -137.2070675

Table 1: First three elements (i = 0, 1, 2) of sets LD
N for Dirichlet boundary

conditions, N = 0, 1, 2, 3 and a parabolic velocity field v(r) = 2(1− r2)

lNi,N i = 0 i = 1 i = 2

N = 0 0 -12.8398060 -41.93087773
N = 1 -4.160532810 -25.33493287 -62.48391850
N = 2 -12.83980600 -41.93087773 -87.08337035
N = 3 -26.13743028 -62.80555035 -115.8424000

Table 2: First three elements (i = 0, 1, 2) of sets LN
N for Neumann boundary

conditions, N = 0, 1, 2, 3 and a parabolic velocity field v(r) = 2(1− r2)

Graetz has computed the first eigenvalue with two digits precision in [16].
Tables 1 and 2 give the numerical estimates of the first three eigenvalues as-
sociated with a parabolic flow, Dirichlet and Neumann boundary conditions.
More complete and precise computations of the eigenvalues can be found, for
example, in [34]. S olution given by (3) can be completed by the orthogonality
properties of the eigenfunctions: if N 6= N ′ or l 6= l′

∫ 2π

0

∫ 1

0

GN,l(r)e
iNϕGN ′,l′(r)e

−iN ′ϕv(r)r dr dϕ = 0, (6)
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where the over bar denotes a complex conjugate. Hence, using (6), the constant
coefficients cN,l in decomposition (3) are directly related to the projection of
the initial conditions over its corresponding eigenfunction GN,l:

cN,l =

∫ 2π

0

∫ 1

0

T0(r, ϕ)GN,l(r)e
−iNϕv(r)r dr dϕ

2π

∫ 1

0

|GN,l(r)|2v(r)r dr
. (7)

Hence, using the eigenfunctions defined in (4) the complete solution of the
high Péclet limit of the convection-diffusion problem (2) within a tube ad-
mits a complete spectral representation. Incidentally, the convergence of this
representation is known to be rather slow [34]. This is especially true when
describing the solution near the origin z = 0. In this limit, even if (3) and (7)
describe the true mathematical solution, the Lévêque [19] asymptotic expan-
sion should be preferred, because of its simplicity.

Nevertheless, this spectral representation is very useful when only part
of the solution is required, as for example, for the far field behaviour when
z > Pe/(l1 − l0), for which the solution exponentially converges to the first
eigenfunction. In the following, we will concentrate on the first eigenfunctions
and their associated eigenvalues. We will be furthermore interested in the
averaged description of the solution. It should be noted that a uniform aver-
aging along the disk section of the cylinder only keeps axi-symmetrical modes.
A more detailed discussion about non-asymmetrical contributions to the aver-
aged description will be discussed in section 4.3. The amplitude decomposition
(7) nevertheless shows that every axi-symmetrical eigenvalue li,0 contributes
to uniformly averaged concentration solution. This should be kept in mind
in the following because many results associated with averaged description in
the literature have neglected contributions from eigenvalue li,0, with i ≥ 1. In
the following, we will, for example, see (what is already obvious from directly
averaging solution (3) & (7) which lead to no contribution of l 6= 0 modes for
which 〈v(r)GN,l〉 = 0) that a uniform averaging does not permit to capture
any decaying eigenvalue associated with the Neumann boundary conditions.

1.2 Weighted volume averaging method

In this section we present an improved version of the volume averaging method
introduced in [36] that nevertheless remains closely related to this first method
– that we will call ”standard volume averaging method”. The improvement
is based on the introduction of weighted averaging operators as proposed in
[15] when the standard volume averaging method only considers averaging
associated with the Lebesgue measure. The use of weighted averages had been
considered long ago for averaging transport equations [39, 40, 29, 12]. The
intentions were to correctly regularize the micro-scale fields, with the objective
of improving comparison with experiments. It is interesting to notice that
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this paper emphasizes another important and fundamental role of weighted
averages more related to the mathematical structure of the operator to be
averaged.

Definition and notations

To introduce general weighted averaging operators we first introduce the stan-
dard averaging operator 〈 〉 corresponding to the Lebesgue measure on each
cylinder section for functions with radial symmetry:

〈T 〉 (ϕ, z) = 2

∫ 1

0

T (r, ϕ, z)r dr ,

and we now define a general weighted averaging operator 〈〉⋆ sometimes simply
denoted ⋆ associated with any normalised weight function w(r) – i.e. such that
〈w〉 = 1 – in cylindrical coordinates as:

〈T 〉⋆(ϕ, z) ≡ T ⋆(ϕ, z) = 〈Tw〉(ϕ, z) = 2

∫ 1

0

T (r, ϕ, z)w(r)r dr . (8)

In the next sections of this paper we will examine special cases of weight func-
tion w. First, a uniform weight w = 1 is associated with the standard volume
averaging method [36]. Another interesting case, introduced in the preceding
section is the “mixing-cup” averaging where the weight function has a de-
pendence exactly similar to that of the velocity field w(r) ≡ v(r)/〈v〉. The
resulting averaged temperature is also often called bulk temperature. As men-
tioned in the previous section, this weight function is precisely interesting to
be considered in this context because it exactly corresponds to the orthogo-
nalisation operator associated with the Graetz eigenfunctions, as illustrated in
(6). In the following, the averaging operator is either defined using a specific
weight function yet to be specified w, or, on the contrary, to simplify the no-
tation, a generic ⋆ is used for averaging (8). Now, averaging the theoretical
solution (3) leads to:

T ⋆(ϕ, z) =
∑

N∈Z

∑

l∈LN

CN,le
iNϕe

l
Pe

z with CN,l = cN,lG
⋆
N,l ∈ R . (9)

It should be noted that a supplementary average along the azimuthal direction
ϕ could be performed. If uniform along ϕ, such average will only preserve the
axi-symmetric mode N = 0 in (9). If the azimuthal averaging is chosen non-
uniform along ϕ, then the averaged solution could have contributions from non
axi-symmetric mode N 6= 0. In the following, we will be mainly interested in
averaging along the radial coordinate. Thus the macroscopic field depends on
the azimuthal angle ϕ. The results that are presented for the convergence of
averaging models, will be discussed for any azimuthal modeN . Those averaged
models, could easily been averaged a second time along ϕ to find longitudinally
varying averaged equations as finally discussed in subsection 4.3.
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As mentioned in the introduction, the volume averaging method is a general
technique whose purpose is to find a macroscopic description, i.e , an averaged
description of a microscopic field that fulfills some PDE problem, without
explicitly solving the complete problem, but solving some simplified version
of it. Greek letters will be reserved for quantities associated with the volume
averaging predictions. Prediction for the scalar field T is thus denoted Θ. In
general, the prediction is decomposed into a macroscopic volume averaging
prediction Θ⋆ and some local deviation θ to this macroscopic behaviour:

Θ(r, ϕ, z) = Θ⋆(ϕ, z) + θ(r, ϕ, z) =
∑

N∈Z

(Θ⋆
N(z) + θN(r, z)) e

iNϕ (10)

with the associated condition 〈θ〉⋆ = 0. In the upscaling techniques considered
in this paper, the derivation is sought generally under the form of a mapping
onto the macroscopic variables and derivatives. The averaged of the microscale
equation will be discussed in detail later. This macro-scale equation can be
used to show that Θ⋆ also decomposes into a sum of exponential modes:

Θ⋆(ϕ, z) =
∑

N∈Z

Θ⋆
N(z)e

iNϕ , (11)

with,

Θ⋆
N(z) =

∑

λ∈ΛN

CN,λe
λ
Pe

z with CN,λ = cN,λΓ
⋆
N,λ ∈ R, (12)

where the corresponding Greek letters have been used to describe the approx-
imated discrete spectrum ΛN and its corresponding approximated eigenvalues
λ, as well as the corresponding approximated eigenfunction ΓN,λ, approximat-
ing GN,l, with an approximated amplitude cN,λ that will be more explicitly
defined in section 3.
The main purpose of section 3 is to find from which conditions it is possible to
find intersections between ΛN and the eigenvalue set LN (5) of the theoretical
problem (2). It will be found in section 3.1 that only a part of the spectrum

LN can be approximated by elements of ΛN . It will furthermore be shown in
section 3.2 that elements of ΛN converges toward these elements of LN that
can be approximated when increasing the order of the averaging method. The
rate of convergence is consequently studied in section 3.3.

Weighted volume averaging technique

In this subsection we present the principal steps of the weighted volume av-
eraging technique. The next section will a posteriori justify the classical
assumptions made in this section, from examining the weighted volume aver-
aging method generalised to higher order. We will study here both Neumann
and Dirichlet Graetz problems. The case of Dirichlet boundary conditions
associated with the Graetz problem has been previously examined in the con-
text of the standard volume averaging technique in [15]. The first step of the
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method is to average the governing equation (2), so that 〈2〉⋆ is

Pe∂z 〈vΘ〉⋆ = 〈∆cΘ〉⋆ + 1

r2
〈∂2ϕΘ〉⋆ = 〈∆cΘ〉⋆ + 1

r2
∂2ϕ〈Θ〉⋆ . (13)

The next step is to use decomposition (10) and (11) in (13), so that a macro-
scopic equation is defined for Θ⋆

N :

〈∆cΘN〉⋆ −N2

〈

ΘN

r2

〉⋆

= Pe∂z 〈vΘN〉⋆ . (14)

The completeness of this macroscopic equation necessitates the knowledge of
deviation θN . The problem associated with the deviation θN is now obtained
from subtracting (14) from (2):

(v − 〈v〉⋆) Pe∂zΘ⋆
N + Pe∂z (vθN − 〈vθN〉⋆) = L⋆

NΘN , (15)

where L⋆
N stands for the non-local differential operator:

L⋆
NΘN = ∆NΘN − 〈∆NΘN〉⋆,

∆NΘN = ∆cΘN − N2

r2
ΘN , (16)

〈∆NΘ〉⋆ = 〈∆cΘN〉⋆ −N2〈 1
r2
ΘN〉⋆

This operator is neither local nor self-adjoint. It is nevertheless invertible as
shown in appendix C. The first term of (15) is a macroscopic source term that
enters in the microscopic problem defined for deviation θN . From now on, no
hypothesis has been made and the above equations are exact. These equations
are nevertheless not closed because the coupling between the deviation and
the macroscopic field still remains unsolved. Finding this coupling is in fact
exactly identical to solving the original problem (2), the resolution of which
we precisely want to avoid.
Hence, the key step is then to find a suitable hypothesis to close deviation prob-
lem (14) so that it should only depend on the macroscopic field Θ⋆

N . First, it
should be born in mind that the governing equation (2) is linear. As a conse-
quence, it is obvious that the deviation θN dependence with the macroscopic
field Θ⋆

N has to be linear here. Such a linear dependence is in fact very gener-
ally admitted in most of the application of the method [36], and comes from
the assumption of scale separation. Hence, one writes the “closure hypothesis”

by introducing the additional closure field or mapping variables α0,1(r) which
relates the deviation θN(r, z) to the macroscopic field Θ⋆

N(z):

θN(r, z) =
(

w(r)α0,N(r)− 1
)

Θ⋆
N(z) + w(r)α1,N(r)Pe∂zΘ

⋆
N(z) ,

or equivalently:

ΘN(r, z) = α0,N(r)Θ
⋆
N(z) + α1,N (r)Pe∂zΘ

⋆
N(z) . (17)
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It is clear that additional terms are required to obtain an exact solution, and
this is our objective to understand what has been kept in such an approximate
solution. Using the closure hypothesis (17) in (15) we obtain:

(

L⋆
Nα0,N

)

Θ⋆
N +

(

L⋆
Nα1,N − v(r)α0,N + 〈vα0,N〉⋆

)

Pe∂zΘ
⋆
N

−
(

v(r)α1,N − 〈vα1,N〉⋆
)

Pe2∂2zΘ
⋆
N = 0

The condition of this equality is that each coefficient multiplying the macro-
scopic field variations Θ⋆, ∂zΘ

⋆, ∂2zΘ
⋆ are equal to zero. Nevertheless, (17) has

introduced a closure hypothesis with only two terms, so that, the first two
terms should also self-consistently be considered here. This last point is fur-
ther discussed in the next section. Hence, problems associated with the closure
fields α0,N and α1,N are:
{ (

L⋆
Nα0,N

)

(r) = 0
α⋆
0,N = 1

and

{ (

L⋆
Nα1,N

)

(r) = v(r)α0,N(r)− 〈vα0,N〉⋆
α⋆
1,N = 0

(18)

with αi,N(1) = 0 for D, ∂rαi,N(1) = 0 for N or

αi,N (1) + γ∂rαi,N (1) = 0 for R , i = 1, 2

These problems can be solved analytically for a Neumann, Dirichlet or Robin
boundary condition and their resolution is detailed in appendix C. When intro-
ducing these solutions in the macroscopic problem (14), one find the following
macroscopic problem

K0,NΘ
⋆
N +K1,NPe∂zΘ

⋆
N − 〈vα1,N〉Pe2∂2zΘ⋆

N = 0 (19)

which involves the effective parameters

K0,N = 〈∆Nα0,N〉⋆ , K1,N = 〈∆Nα1,N〉⋆ − 〈vα0,N〉⋆ , (20)

and the solution for Θ⋆
N decomposes to a sum of exponential modes with

an associated characteristic length Pe/λ which then defines the set Λ1,N of
eigenvalues predicted by the volume averaging technique

Λ1,N =
{

λ / K0,N +K1,Nλ− 〈vα1,N〉λ2 = 0
}

. (21)

Explicit results

This subsection gives the solutions of problem (18) i.e, the mapping variables,
and (19) obtained for different values of the weighted function w.
• Standard volume averaging, w = 1, axi-symmetric mode N = 0:
The solution for the closure function has been found equal to:

for D :

{

α0,0(r) = 2(1− r2)

α1,0(r) = r6

9
− r4

2
+ r2

2
− 1

9

, for N :

{

α0,0(r) = 1

α1,0(r) = − r4

8
+ r2

4
− 1

12

(22)
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So that constants K0,0 and K1,0 can be computed:

for D :

{

K0,0 = −16
K1,0 = −2

, for N :

{

K0,0 = 0
K1,0 = −1

(23)

These calculations permit to compute the associated approximated eigenvalues
by solving (21). As already observed in [15], the resulting Dirichlet eigenvalue
λD0,0 ≃ −− 3.874877690 gives a rather good approximation of the Graetz value
lD0,0 ≃ −3.656793458 up to 6%. On the contrary, the Neumann eigenvalue
lN1 ≃ −12.839806 is completely missed by the volume averaging method, which
nevertheless gives the trivial solution zero lN0,0 = 0. This trivial solution is of
course of great practical interest since it corresponds to the exact solution when
the temperature at the origin is constant, it also gives the correct averaged
temperature of the far field solution.
• Flow averaging, w = v/〈v〉 = 2(1− r2), axi-symmetric mode N = 0:
The solution for the closure function has been found equal to:

for D :

{

α0,0(r) = 3

2
(1− r2)

α1,0(r) = r6

12
− 3r4

8
+ 57r2

160
− 31

480

, for N :

{

α0,0(r) = 1

α1,0(r) = − r4

8
+ r2

4
− 1

16

(24)
So that constants K0,0, K1,0 can be computed:

for D :

{

K0,0 = −3
K1,0 = −63

40

, for N :

{

K0,0 = 0
K1,0 = −1

(25)

The approximate Dirichlet eigenvalue is found in this case equal to λD0,0 ≃
−3.809523810 which is 4% from the theoretical Graetz eigenvalue lD0,0. The
Neumann trivial solution λN0,0 = 0 is also found and the first Neumann non-
trivial eigenvalue λN1,0 is also totally missed in the case of a flow averaging.
The following section investigates the capacity of the method to find the correct
answer to the problem, while generalising it by introducing higher order closure
hypothesis.

2 Weighted volume averaging method of higher

order

The notations and methodological steps in this section are closely following
those previously presented in sections 1.2 and 1.2. More precisely, the solution
we are looking for is decomposed as (10), and the same exact steps (13) to
(15) are now considered again.
The improvement of the method consists in a generalisation of the closure
hypothesis (17). This is introduced in order to ameliorate the results previously
obtained in section 1.2, with, for instance, the hope to capture the first non
trivial Neumann eigenvalue lN1,0.
From the property (32) of the exact solution, that will be studied in section 3.1,
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and from the previously examined closure relation (17) let us now introduce a
generalised closure relation:

ΘN(r, z) =

p
∑

n=0

αn,N(r)Pe
n∂nzΘ

⋆
N(z) , (26)

with p ≥ 1. The case p = 1 has been analysed in section 1.2, and we now
follow the same steps. Using (26) in the deviation equation (15) it is found –
assuming that α−1,N (r) = 0:

p
∑

n=0

(

L⋆
Nαn,N − vαn−1,N + 〈vαn−1,N〉⋆

)

Pen∂nzΘ
⋆
N(z)

−
(

vαp,N − 〈vαp,N〉⋆
)

Pep+1∂p+1
z Θ⋆

N(z) = 0 .

The condition of this equality gives, at each order, the closure problem asso-
ciated with the closure functions αn,N(r), whose solvability is left to appendix
C, and which is to be solved recursively:















L⋆
Nαn,N = v(r)αn−1,N(r)− 〈vαn−1,N〉⋆ with α−1,N(r) = 0

α⋆
0,N = 1 or α⋆

n,N = 0 for n ≥ 1
αn,N(1) = 0 for D
∂rαn,N(1) = 0 for N

(27)

The resolution of these problems is detailed in appendix C.2.
From solving (27) it is possible to find the generalised macroscopic closed
problem at order p:

p
∑

n=0

Kn,NPe
n∂nzΘ

⋆
N(z)− 〈vαp,N〉⋆ Pep+1∂p+1

z Θ⋆
N(z) = 0 , (28)

where the macroscopic coefficients Kn,N are given by:

Kn,N = 〈∆Nαn,N〉⋆ − 〈vαn−1,N〉⋆ , Kn,N ∈ R, (29)

The predicted solutions of (28) then decompose into a sum of exponentials
with modes λ/Pe for λ belonging to the set of predicted eigenvalues at order
p, Λp,N , defined as the zeros set of a p+ 1 order polynomial:

Λp,N =
{

λ /

p
∑

n=0

Kn,Nλ
n − 〈vαp,N〉⋆ λp+1 = 0

}

. (30)

As previously, Λp,N is independent of Pe, but does depend on the chosen bound-
ary conditions, and the order p of the closure relation. This last point naturally
leads to the concept of convergence:
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Definition 1 (convergence of the weighted volume averaging method). The
elements of all sets Λp,N define sequences of predicted eigenvalues:

(

λi,p
)

p≥1,i≥0
,

λi,p ∈ Λp,N .
We shall say that the method is convergent toward some eigenvalue li ∈ LN of
the theoretical problem (2) if there exists a sequence of predicted eigenvalues
(

λi,p
)

p≥1,i≥0
such that λi,p ∈ Λp,N and limp→+∞ λi,p = li ∈ LN .

We will establish the convergence for a characterised part of the spectrum
in section 3.3.

3 Convergence analysis

Previous sections have mainly considered the explicit application of the aver-
aging method to Graetz problem. The necessary material and notation being
now defined, this section considers the mathematical analysis of the conver-
gence of these averaging methods. This convergence analysis requires two
different steps. The first step introduces two necessary conditions over eigen-
values, for convergence to hold. The second step gives the proof that these two
necessary conditions are sufficient. In the two subsequent sections, the results
are derived in a general context, and formally apply to any mode N , as well
as any boundary conditions D, N or R and any flow v(r). Hence, in order
to simplify notations, the analysis does not mention, unless necessary to avoid
confusion, which azimuthal mode it refers to, nor the boundary conditions that
is considered. Finally, specific situations will be considered in section 3.3 for
analysing the numerical convergence.

3.1 Restricted convergence of weighted averaging meth-

ods

We define in the two following subsections two sets, the validity – D⋆
val – and

the accessibility – D⋆
acc – domains, which are disks lying in the complex plane

C. As we will see, a necessary condition for the weighted averaging method
to converge toward an eigenvalue l ∈ L is that this eigenvalue belongs to both
these domains.

Validity domain D⋆
val

The variables of the initial problem (2) can be separated so that any solution
T (r, ϕ, z) may be written as a product of functions of r, ϕ and z only. Let us
first show in this section that the exact solution of the problem can be formally
written as a regular asymptotic expansion of the macroscopic field T ⋆(ϕ, z).
First let us decompose T as:

T (r, ϕ, z) =
∑

N∈Z

TN(r, z)e
iNϕ (31)
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The aim of this subsection is to analyse under which condition the N th com-
ponent TN(r, z) in decomposition (31) of the theoretical solution T (r, ϕ, z) can
be written as the following expansion of T ⋆

N(z):

TN(r, z) =
∑

n≥0

an(r)Pe
n∂nz T

⋆
N(z) , (32)

(where the index N on the closure functions an(r) has been omitted for sim-
plicity) to be compared with the general closure hypothesis (26) for ΘN(r, z).
Let us recall the form of the original solution (3):

TN(r, z) =
∑

l∈LN

clTl(r, z) with cl ∈ R , Tl(r, z) = GN,l(r)e
l
Pe

z , (33)

so that (32) is true for TN(r, z) if and only if it holds for each function Tl(r, z)
standing in the decomposition (33) of TN(r, z). Comparing then the expression
for Tl in (32) and (33), one can see that (32) holds for Tl(r, z) if and only if
the following equality over the Graetz eigenfunctions Gl holds:

∑

n≥0

an(r)l
n =

GN,l(r)

G⋆
N,l

. (34)

We will prove that both functions GN,l(r) and G
⋆
N,l are analytical with respect

to l, so that the expansion of GN,l(r)/G
⋆
N,l on the form (34) is only possible

for l belonging to a disk D⋆
val centered on zero whose radius R is equal to the

smallest root of G⋆
l :

Definition 2. Let us call validity domain the disk D⋆
val ⊂ C:

D⋆
val =

{

l , |l| < R
}

where R = inf
{

|l| / G⋆
N,l = 0

}

it is depending only on the averaging operator ⋆ and on N .

Now, one can see that the decomposition (32) is not true in general. It is
true only if all the eigenvalues l standing in the decomposition (33) of TN(r, z)
belong to the validity domainD⋆

val. An important consequence is that a closure
formulation (26) only makes sense for eigenvalues lying in D⋆

val. Hence, a
necessary – but not sufficient – condition for an eigenvalue l ∈ L to be predicted
by the averaging method is to lie within D⋆

val. It is also interesting to note
that D⋆

val only depends on the averaging operator ⋆, and N , but not on the
boundary conditions.
We summarise this condition, as well as the definition of the new functions
an(r) in the following lemma (32):

Lemma 1. The base functions Tl(r, z) = GN,l(r)e
l
Pe

z for problem (2) can be
written:

Tl(r, z) =
∑

n≥0

an(r)Pe
n∂nz T

⋆
l (z) ,
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iff l ∈ D⋆
val defined by

D⋆
val =

{

l / |l| ≤ R
}

where R = inf
{

|l| / G⋆
N,l = 0

}

,

and the functions an(r) are the solution of the recursive scheme:

{

∆Nan(r) = v(r)an−1(r) with a−1(r) = 0
a⋆0 = 1 and a⋆n = 0 for n ≥ 1

(35)

Proof. In appendix B we give the proof that the functions GN,l(r), ∂rGN,l(r)
and ∆NGN,l(r) are analytical with respect to l on the whole complex plane C.
More precisely there exists a set of functions (qn(r))n∈N (depending also on N)
defined by (59) such that for r ∈ [0, 1] and l ∈ C one has:

GN,l(r) =
∑

n≥0

qn(r)l
n , ∂rGN,l(r) =

∑

n≥0

∂rqn(r)l
n and ∆NGN,l(r) =

∑

n≥0

∆Nqn(r)l
n .

As a result the three functions
GN,l(r)

G⋆
N,l

,
∂rGN,l(r)

G⋆
N,l

,
∆NGN,l(r)

G⋆
N,l

are analytical

with respect to l for l ∈ D⋆
val and r ∈ [0, 1] and there exist three sets of functions

(an(r))n∈N, (bn(r))n∈N and (cn(r))n∈N such that for l ∈ D⋆
val and r ∈ [0, 1]:

GN,l

G⋆
N,l

(r) =
∑

n≥0

an(r)l
n ,

∂rGN,l

G⋆
N,l

(r) =
∑

n≥0

bn(r)l
n and

∆NGN,l

G⋆
N,l

(r) =
∑

n≥0

cn(r)l
n

(36)
and using the integration theorem on these series one gets:

bn(r) = ∂ran(r) and cn(r) = ∆Nan(r) for all n ∈ N

so that:
∆NGN,l

G⋆
N,l

(r) =
∑

n≥0

∆Nan(r)l
n . (37)

Now the function
GN,l

G⋆
N,l

(r) is the unique solution of the ODE:

∆Nf = lv(r)f and f ⋆ = 1 (38)

Rewriting (38) with (36) and (37) gives that the functions (an(r))n∈N are ex-
actly given by the recursive scheme (35).

Accessibility domain D⋆
acc

The eigenvalues predicted by the averaging method are the roots of the poly-
nomial equation (30). Let us consider – as p→ ∞ – the limit set of predicted
eigenvalues Λ∞ defined as the zeros set of the series

∑

n≥0
Knλ

n:

Λ∞ =
{

λ /
∑

n≥0

Knλ
n = 0

}

, (39)
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where the index N on the macroscopic coefficient, assumed to be fixed, has
been omitted. Among the eigenvalues predicted with the averaging method
at order p, the only ones that make sense are these approximating some λ ∈
Λ∞, and by increasing the order p of the method one can only improve the
computation on these modes λ ∈ Λ∞. As a result, for an eigenvalue l ∈ L
of the theoretical problem (2) to be approximated by the averaging method,
and for this method to be convergent as p → ∞ to this eigenvalue l ∈ L, it is
necessary – but not sufficient – that the series

∑

n≥0
Knl

n is convergent.
With definition (29) of the macroscopic coefficient Kn, the series

∑

n≥0
Knl

n

make sense for l ∈ D⋆
acc defined as follows:

Definition 3. Let us call accessibility domain D⋆
acc ⊂ C the disk of all the

complex λ ∈ C such that the series

∑

n≥0

αn(r)λ
n ,

∑

n≥0

∆Nαn(r)λ
n ,

∑

n≥0

∂rαn(r)λ
n (40)

are convergent for r ∈ [0, 1]. If λ ∈ D⋆
acc we say that λ is accessible by the

averaging method.

On the contrary of the validity domain D⋆
val, the accessibility domain D⋆

acc

does not only depend on the averaging operator ⋆ and on N , but also on the
boundary conditions that influences the computation of functions αn.

Evaluation of D⋆
val and D⋆

ac

We here focus on the numerical evaluation of the two previously introduced
domains D⋆

val and D
⋆
ac.

To compute the radius of the validity domain D⋆
val, we need to compute the

smallest root of the function of l, G⋆
N,l. For this, we give in appendix B an

expansion of the generalised Graetz functions GN,l(r) with the help of a set
of functions qn(r) defined in (59): GN,l(r) =

∑

n≥0
qn(r)l

n. The computation
of these functions qn(r) make possible to compute the radius of D⋆

val as the
smallest root of the polynomial

∑

n≥0
q⋆nl

n.
To compute the radius of the accessibility domain D⋆

acc one needs an upper
bound on the three functions αn(r), ∂rαn(r) and ∆Nαn(r) for r ∈ [0, 1]. Exper-
iments based on the computation of these functions showed that ∆Nαn(r = 1)
is a good upper bound for these functions and the radius of D⋆

acc is equal to
the convergence radius of the series

∑

n≥0
∆Nαn(r = 1)λn.

Radii for D⋆
val and D⋆

acc for some chosen weight functions w(r) are given in
table 3. Comparing table 3 with table 1 and 2

shows that the standard and the flow averaging method can only capture lD0,0
for D and lN0,0 = 0 for N . This result is self-consistent with the computations
previously examined in sections 1.2. To capture the first non trivial eigenvalue
for N one needs to use other averaging operators. Moreover, it will be shown
in section 3.2 that the two necessary conditions introduced in the previous
sections are actually sufficient for the convergence to hold. In addition, it will
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w(r) D⋆
val D⋆

acc, D D⋆
acc, N

1 7.84 15.899 10.568
2(1− r2) −lN1 ≃ 12.839 18.632 12.839
1/(2r) 354.75 24.789 14.665

10(1− r)3 > 500 29.82 23.33

Table 3: Radius of D⋆
val and D

⋆
acc for different weights and for N = 0

10
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10
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55

60

D⋆
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γ

Figure 1: Computation of the accessibility domain D⋆
acc for a Robin boundary

condition versus the parameter γ and for N = 0. The four weighting functions
w considered on table 3 have been analysed. Circular black symbols stands
for the flow-averaging method with w = v/〈v〉, and circular white symbols for
the classical uniform volume averaging w = 1. White square symbols are for
w = 1/(2r) and black square symbols are for w = 10(1− r)3.

appear that the first non trivial eigenvalue for N , lN1,0 ≃ −12.8398060, and
even the second eigenvalue for D, lD1,0 ≃ −22.30473055, can be captured when
using adapted averaging operators.

3.2 Convergence theorem

We introduced in the previous subsection two necessary conditions associated
with any eigenvalue l ∈ L to be captured by the averaging method. We
prove here that these conditions are actually sufficient for the convergence to
hold. More precisely, the eigenvalues predicted by the averaging method when
p → ∞ are exactly the eigenvalues of the theoretical problem (2) that both
belong to the validity and accessibility domains.

Theorem 1. Between the set of eigenvalues L of theoretical problem (2) and
the three following sets: the validity domain D⋆

val defined in definition 2, the
limit set of predicted eigenvalues Λ∞ in (39) and the accessibility domain D⋆

acc

defined in definition 3, one has the following relation (for any azimuthal mode
N , any boundary condition D, N or R and any averaging operator ⋆):

Λ∞ ∩D⋆
val = L ∩D⋆

val ∩D⋆
acc , (41)
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which means that the eigenvalues predicted by the averaging method inside
D⋆

val exactly converge toward the theoretical eigenvalues of (2) being inside
D⋆

val ∩D⋆
acc.

Proof. We recall that we defined in (4) the generalised Graetz functions GN,l(r)
for each l ∈ C and each N ∈ Z as the unique solution for the ODE:

∆NGN,l = lv(r)GN,l(r) ,
GN,l(r)

rN
(r = 1) = 1 , (42)

and that, for Neumann, Dirichlet or Robin boundary conditions, the associated
sets of theoretical eigenvalues are given by (5).
Using lemma 1, one has that:

LN ∩D⋆
val =

{

l ∈ C,
∑

n≥0

∂ran(1)l
n = 0

}

, LD ∩D⋆
val =

{

l ∈ C,
∑

n≥0

an(1)l
n = 0

}

or

LR ∩D⋆
val =

{

l ∈ C,
∑

n≥0

(an(1) + γ∂ran(1))l
n = 0

}

.

where the functions (an(r))n∈N are those defined by the recursive scheme (35).
For simplicity, one introduces the quantities An defined as:

for D : An = an(1) , for N : An = ∂ran(1) , for R : An = an(1)+γ∂ran(1) ,
(43)

so that for D, N or R cases one has

L ∩D⋆
val =

{

l ∈ C,
∑

n≥0

Anl
n = 0

}

.

Let us consider the two functions of l as the sum of the following series in l:

Al =
∑

n≥0

Anl
n , Kl =

∑

n≥0

Knl
n ,

which are convergent for l ∈ D⋆
val ∩D⋆

acc.
Then, to prove (41) one exactly has to show that:

∀ l ∈ D⋆
val ∩D⋆

acc : Al = 0 iff Kl = 0 . (44)

To prove this, one has to find a relation between An and the macroscopic
coefficient Kn. For this, one introduces the set of functions

(

en(r)
)

associated
with the difference between functions an(r) and αn(r) defined in (35) and (27):

en(r) = αn(r)− an(r) . (45)

These functions, by subtracting (35) from (27), are exactly defined by the
following recursive scheme:























∆Nen(r) = Kn + v(r)en−1(r) with e−1(r) = 0
e⋆n = 0
en(1) = −An for D
∂ren(1) = −An for N

en(1) + γ∂ren(1) = −An for R

(46)
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This recursive formula does depend on both macroscopic coefficients Kn and
An. Let us finally define the macroscopic difference function El(r) by:

El(r) =
∑

n≥0

en(r)l
n =

∑

n≥0

αn(r)l
n −

∑

n≥0

an(r)l
n ,

which is well defined for l ∈ D⋆
val ∩D⋆

acc.
We search a differential problem satisfied by El(r).
Thanks to lemma 39 on D⋆

val, and to definition 3 of D⋆
val, the following series:

∑

n≥0

an(r)l
n ,

∑

n≥0

∂ran(r)l
n ,

∑

n≥0

∆Nan(r)l
n and

∑

n≥0

αn(r)l
n ,

∑

n≥0

∂rαn(r)l
n ,

∑

n≥0

∆Nαn(r)l
n ,

converge for all l ∈ D⋆
val ∩D⋆

acc and all r ∈ [0, 1]. Then, using the integration
theorem and the properties (46) of functions en(r) one has:

∀ l ∈ D⋆
val∩D⋆

acc , ∀ r ∈ [0, 1] :























∆NEl(r) = Kl + v(r)El(r)
E⋆

l = 0
El(1) = −Al for D
∂rEl(1) = −Al for N

El(1) + γ∂rEl(1) = −Al for R

Kl or Al being fixed, this problem has one and only one solution so that Al

is a function of Kl and conversely. Now, it is easy to check that the solution
associated with Al = 0 is El = 0, which eventually fixes Kl = 0. Conversely,
and for the same reason, Kl = 0 fixes Al = 0. This ensures (44), which proves
theorem 1.

It is interesting to note that because El = 0 is the solution associated with
a converging eigenvalue λ∞ ∈ Λ∞ = l ∈ L, the ratio between the predicted
eigenfunction and its value at r = 0 also converges to the theoretical Graetz
eigenfunction. This leads to the following important corollary:

Corollary 1. For an eigenvalue l ∈ L ∩D⋆
val ∩D⋆

acc, with an associated set of
approximated eigenvalues (λp)p∈N such that limp→∞ λp = l, let us define the
approximated eigenfunction Γλp

as:

Γλp
(r) =

1

ρ

p
∑

n=0

αn(r)λ
n
p ,with ρ =

p
∑

n=0

αn(r)

rN
(r = 0)λnp , (47)

then Γλp
converges toward the generalised Graetz function GN,l:

lim
p→∞

‖Γλp
−GN,l‖ = 0, (48)
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moreover, defining the amplitude cλ, in the same way as cl defined in (7):

cλp
=

∫ 2π

0

∫ 1

0

T0(r)Γλp
(r)e−iNϕv(r)r dr

2π

∫ 1

0

|Γλp
(r)|2v(r)r dr

, then lim
p→∞

|cλp
− cl| = 0. (49)

Hence, not only Theorem (1) gives a necessary and sufficient condition
for an eigenvalue to converge, but, also, the eigenmode will converge to the
corresponding theoretical solution. We now numerically study the convergence
of various eigenmodes for different averaging operator w.

3.3 Convergence evaluation

This section studies the numerical evaluation of the convergence to either the
eigenvalue, the eigenfunction and the eigenmode amplitude for a Poiseuille
parabolic velocity profile v(r) = 2(1− r2). We calculate the closure functions
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Figure 2: Relative error for axi-symmetrical N = 0 eigenvalues l0,0 and l0,1 (a)
Relative error ED

0 = |λD0,p − lD0,0|/lD0,0 between the predicted eigenvalue and the
theoretical one lD0,0 = −3.656793458, versus the order p of the approximation.
Circular black symbols stands for the flow-averaging method with w = v/〈v〉,
and circular white symbols for the classical uniform volume averaging w = 1.
White square symbols are for w = 1/(2r) and black square symbols are for
w = 10(1− r)3. In every case the convergence is exponential, as indicated by
the observed semi-log linear behaviour. (b) same conventions for the second
Dirichlet eigenvalue lD0,1 = −22.30473055 convergence ED

1 = |λD1,p − lD0,1|/lD0,1.
(c) same conventions for the second Neumann eigenvalue convergence lN0,1 =
−12.8398060 with EN

1 = |λN1,p − lN0,1|/lN0,1.

αn from the recursive scheme (27), so that the coefficients Kn defined in (29) of
the eigenvalues polynomial (30) can be computed. From the obtained solution
leading to p + 1 eigenvalues, we select the larger one in R

−. Figure 2 dis-
plays the relative error of this approximated eigenvalue for different weighting
functions w. For the first Dirichlet eigenvalue, figure 2(a) displays exponen-
tial convergence rates. Moreover, when comparing the results of figure 2(a)
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1 2 3 4
10

−5

10
−4

10
−3

10
−2

10
−1

(a) p

Ec

1 2 3 4
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

(b)

EG

p

Figure 3: Relative error for axi-symmetrical N = 0 eigenmode. (a) Relative
error Ec = |cλD

0,p
−clD

0,0
|/clD

0,0
between the predicted amplitude and its theoretical

value associated with a uniform initial temperature T0 = 1 at z = 0 for the first
Dirichlet eigenmode, versus the order p of the approximation. (b) Absolute
error EG = ||ΓλD

0,p
−GlD

0,0
|| = 〈w(ΓλD

0,p
−GlD

0,0
)2〉 on the predicted eigenfunction

for the first Dirichlet eigenmode.

with table 3, it is not surprising to observe that a larger radius of convergence
D⋆

acc gives rise to a faster convergence rate. As demonstrated in the previous
section, the second eigenvalue for Dirichlet or Neumann boundary condition
is not accessible to the standard volume averaging methods — w = 1— or
the kinematic volume averaging — w = v/〈v〉—. On the contrary, two other
weighting functions w have been proposed in table 3, the convergence of which
has been established for the second eigenvalue in the previous section. Figures
2(b) and 2(c) study their convergence on the second eigenvalue in the Dirichlet
and Neumann case. It is interesting to observe on these figures that the conver-
gence rate still looks exponential, even if the convergence rate is much slower
than those observed on figure 2(a). More modes should be indeed needed for
an acceptable precision to be obtained.

Moreover, for finite values of the spectral cut-off p, the second eigenvalue
could not always be captured. For example, this can be observed on Figure
2b in the case of weighting function w = 10(1 − r)3, for which the eigenvalue
becomes real, so that it is considered as being captured by the approximation
for p ≥ 12 only. This example also illustrates that an empirical test of the
convergence is not always successful. If one would have guessed, ignoring the
convergence proof, from the computation of the first ten mapping variables
αp, p < 10 that the first eigenvalue computed in figure 2b is captured by the
weighting function w = 10(1 − r)3 , it would have found the wrong answer.
Figure 3 displays the convergence of the amplitude and the eigenfunction de-
fined in corollary (1), for the first Dirichlet mode. It is interesting to note
that even the first approximation p = 1 that has been detailed in section 1.2
permits a rather precise amplitude and eigenmode estimate for every tested
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Figure 4: Same conventions as figure 2 for the relative error for non axi-
symmetrical N = 1 eigenvalues l1,0 (a) Relative error EN

0 = |λN0,p − lN1,0|/lN1,0
between the predicted eigenvalue and the theoretical Neumann one lN1,0 =
−4.160532810 , versus the order p of the approximation. (b) same conven-
tions for the first Dirichlet eigenvalue convergence lD1,0 = −10.69115115 with
ED

0 = |λD1,p − lD1,0|/lD1,0.

weighting function w. The convergence rate displayed on figure 3 is also found
to be exponential, as already observed for the eigenvalue convergence. This
result does not seem very surprising, for the generalised averaging method has
many characteristics in common with a spectral discrete method.
Finally, non-axi-symmetrical mode convergence have been investigated. The
convergence of the leading order N = 1 eigenvalue is represented on figure 4.
It is interesting to observe that low order approximation (e.g p < 5) give rises
to a rather precise estimation of this first non-axisymmetric mode. It should
then be noted that for both Neumann and Dirichlet boundary conditions, |l1,0|
is smaller than |l0,1|. Hence, the better convergence of figure 4a,b compared
to 2b,c can be qualitatively understood. Neumann and Dirichlet situations
gives lower and upper bound for the convergence of the more general Robin
boundary condition, when varying γ from 0 to infinity. Hence, the Robin case
should converge the same way as it is observed on the above figures.

4 Discussion

This section discusses the results obtained in the previous sections in the light
of previous analysis found in the literature.

4.1 Context of the presented analysis

As already mentioned in section 1.1 after defining the convection diffusion
problem, (1), different characteristic lengths can be chosen for making dimen-
sionless the longitudinal dimension z and this leads to different Péclet number
Pe ≫ 1 or pe ≪ 1. Any choice should lead to consistent results. When
choosing the Péclet number Pe ≫ 1, it is known that longitudinal variations
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along z scale linearly with Pe. This result holds as an asymptotic expansion
discarding O(1/Pe2) terms [1], and leads to the simplified constitutive equa-
tion (2). Balakotaiah and Chang[5] mention that the condition Pe ≫ 6.93 is
necessary for neglecting axial diffusion. The linear scaling of z variations with
Pe is described in solution (3) and used in the average description of the prob-
lem (12). From this non-dimensionalisation choice, it appears that standard
[36] “ad-hoc”closure relations used in (17) and (26) do not depends on the
Péclet number because each z derivative cancels the corresponding algebraic
dependence in Pe. It then appears that closure relations (17) and (26) are
in fact an asymptotic expansion that involves the eigenvalue l of the prob-
lem as a small parameter. The validity range of this asymptotic expansion,
that should better be described as an analytic expansion of the eigenfunction
with the eigenvalue, is investigated in section 3, while in the mean time the
“ad-hoc”closure relations are a posteriori justified by the convergence proof
obtained in the same section. All the validity range result for eigenvalues are
obtained independently from the value of the Péclet number, but are valid for
Pe ≫ 1 since the starting constitutive equation (2) derives from (1) discarding
O(1/Pe2) terms [1].

4.2 Comparison with other convergence results

It is now interesting to more clearly compare our analysis with previously ob-
tained convergence results. For example, some convergence criteria have been
discussed in the context of centre manifold approximations of the convection-
diffusion problem (1) by Balakotaiah & Chang in [4]. In the case of spatially
varying solutions, the solution is projected over Graetz eigenfunctions. and a
criterion has been found from summing the expansion series. The convergence
criterion can be expressed in the same framework from considering the smallest
longitudinal variations associated with a critical λc. In the case of Dirichlet
boundary conditions, it was found λDc = 13.80 in [4], whereas λNc = 37.7 was
obtained in the case of Neumann boundary conditions. These values have to be
compared with table 3 results. One has to note, that, in our case, the conver-
gence radiusDacc obtained from computing the expansion series, is not the only
relevant parameter for convergence. Dval, which comes from the analyticity
condition on the averaged Graetz eigenfunction that we wish to approximate,
has to be considered also. The convergence radius is the minimum of Dacc and
Dval.

Liapounov-Schmidt reduction technique such as used in [11, 5] is also an-
other method that should be compared to our analysis. As mentioned in the
introduction, this approximation shares much similarities with ours, and the
results are also quite similar. In this case, the considered equation (1) is writ-
ten by making dimensionless the longitudinal direction z by L so that the
Péclet number is replaced by the small parameter pe = PeR/L, as already
indicated in section 1.1. The first step of Liapounov-Schmidt reduction ap-
proximation is to look for a regular asymptotic expansion solution of (1) in
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terms of the small parameter pe. The solution is then decomposed in two
parts similar to (10) & (26) (but based on a splitting of the linear operator
eigenfunctions into “master” eigenfunctions of the kernel of the adjoint op-
erator, and “slave” eigenfunctions of the image of the adjoint operator, see
for example [11]). In the case of Neumann boundary condition and weighting
function w = 1, the first closure field solution that we have obtained are ex-
actly similar with those previously obtained in [11, 5]. More precisely, the first
slave mode computed in Eq. (31) of [11] or Eq.(3.8) of [5] corresponds to the
Neumann solution α1,0 found in (22). Nevertheless, higher expansion closure
fields differ from those of Chakraborty & Balakotaiah [11]. From summing the
expansion series those authors have been able to find a convergence radius for
the approximation. Following criteria (73) of [11], and section 3 discussion of
[5], the convergence radius of the Neumann boundary conditions with uniform
averaging is λNc = 48× 0.288 = 13.8 which should be compared with the value
10.56 of table 3.
This comparison shows that some of our convergence results are very similar
with those previously obtained in the literature with other approaches.

4.3 Azimuthal averaging

In this section we discuss the possibility and the interest of azimuthal av-
eraging. First, it should be noted that relation (7) gives the amplitude of
each non-axisymmetrical mode of the theoretical solution. If, for example,
an initial condition is chosen with a pulse at a given location (r0, ϕ0), i.e

T0(r, ϕ) = δ(r− r0)δ(ϕ−ϕ0), then all non-axisymmetrical mode N 6= 0 will be

represented with a weight cN,l = GN,l(r0)v(r0)r0/
∫ 1

0
|GN,l(r)|2v(r)r dr because

the Fourier transform of the Dirac distribution is uniform. In that case, if
one averages the theoretical solution with a uniform weight function along the
azimuthal angle ϕ, all non-axisymmetrical mode N 6= 0 will not contribute to
the averaged concentration because 〈eiNϕ〉ϕ = 0 for N 6= 0. This is not true
when using a non uniform averaging operator wϕ along the azimuthal angle ϕ.
In this case, there should be some contribution to the averaged concentration
coming from non-axisymmetrical mode N 6= 0, summing cN,l〈eiNϕwϕ〉ϕ〈GN,l〉⋆
contributions.
Some of these non-axi-symmetrical contributions to the true averaged concen-
tration solution could be indeed captured by an averaging method, as shown
in the previous sections. Hence, for each non-axisymmetrical eigenvalue l, one
can obtain the appropriate averaging approximation cλp

〈eiNϕwϕ〉ϕ〈Γλp
〉⋆ of its

contribution to the averaged solution.

Conclusion

This paper analyses the convergence of volume averaging methods on unidirec-
tional convection-diffusion problems. Neumann, Robin and Dirichlet boundary
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conditions have been considered. The latter problem is of a great interest in
the case of local non-equilibrium conditions, i.e, averaged temperature not
equal to the value at the boundary, for which approximate solutions are more
difficult to obtain.

Concentrating on the stationary solution associated with large Péclet num-
bers, it has been found that volume averaging methods converge toward the
exact solution. A necessary and sufficient condition for this convergence to
occur has been found for any unidirectional velocity field, that depends on the
averaging operator w. This condition has been obtained in a general form,
as related to the analytical character of the averaged eigenfunction with the
eigenvalue λ. This condition has in fact a general scope, because it is the basis
for writing “closure relations” as a power series of the eigenvalue.

It is interesting to note that the convergence also depends, obviously, on
the eigenvalue to be captured. In the case of a parabolic velocity profile, the
convergence to the Graetz solution has been studied in more details. In the case
of Dirichlet boundary conditions, “natural” operators w = 1 or w = v allow
the convergence to the first non-trivial eigenvalue. In the case of a Neumann
boundary condition, these usual weighing operators do not capture the first
non-trivial eigenvalue of the Graetz problem. In this case, it is necessary to
use other averaging operators w to get the first spatially decaying mode, and
some of which have been proposed in this paper.

This result shows that averaging over some spatial volume unavoidably
degenerates the space of mathematically accessible solutions. Nevertheless,
despite smoothing out the small scales –the large eigenvalues– the averaged
solution can lead to an asymptotically exact representation of the large scale
structure –the small eigenvalues– of the solution. It is expected that this con-
clusion could be of some general scope when decreasing the dimension number
of a problem by averaging along part of its dimensions.
Moreover, the mathematical proof presented in this paper has been comple-
mented in the case of a parabolic Poiseuille flow by some numerical computa-
tion of convergence rates. They have been found to be exponential, as expected
from a spectral discrete method. It should also be of some general scope, when
averaging linear problems. It is interesting to note that the convergence to-
ward non-trivial eigenvalues is directly related to a correct evaluation of the
heat transfer between the fluid and the solid boundary. As a matter of fact it
should be born in mind that the Nusselt number Nu, defined as usual as the
dimensionless number associated with the heat (or mass) transfer [13] scales
asymptotically, when z ≫ Pe/(l1 − l0), as Nu = l21/2. Hence, convergence to-
ward the eigenvalue of the averaged model is also directly related to a correct
evaluation of the asymptotic transfer between the flow and the solid.

Different extensions of this work could be considered. First, a direct trans-
position of the convergence proof in the case of a plane geometry, with trans-
verse velocity field, should be easily obtained. The quantitative results on the
accessibility domain as well as on the convergence accuracy could nevertheless
be different in that case. The second extension of interest should be related
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to more complicated situations associated with a coupling with conduction in
some external solid domain.

A Graetz functions and Kummer’s functions

The generalised Graetz functions are the eigenfunctions of the operator 1

1−r2
∆N

1

1− r2
∆N ≡ 1

1− r2

(

∂2r +
1

r
∂r −

N2

r2

)

(50)

One wants to solve the self-adjoint Sturm-Liouville problem:

1

1− r2
∆Nf = −ℓ2f, (51)

where we have introduced the positive eigenvalue ℓ2 = −l to compare to (4).

Defining a new function y, from f(r) = rNe−
ℓ
2
r2y(ℓr2), y is then a solution of

the hyper geometric equation:

z∂2zy + (1 +N − z) ∂zy −
(

1 +N

2
− ℓ

4

)

y = 0. (52)

In its more general form, the hyper geometric equation reads:

z∂2zy + (c− z) ∂zy − ay = 0 (53)

which possesses two solutions called confluent hyper geometric functions, and
when c = 1:

• the first one is singular at z = 0 and is not considered here,

• the other one is regular, convergent and noted Φ (a, c, z). It is defined
by the Kummer’s series (with infinite radius of convergence):

Φ (a, c, z) = 1 +
a

c
z +

a (a+ 1)

c (c+ 1)

z2

2
+ ...+

a... (a+ n− 1)

c... (c+ n− 1)

zn

n!
+ ... (54)

f is proportional to the Graetz function GN,ℓ

GN,ℓ(r) = rNe−ℓr2/2Φ

(

1 +N

2
− ℓ

4
, 1 +N, ℓr2

)

(55)

B Analyticity in l of the Graetz functions

In this appendix we prove that the generalised Graetz functions defined in (4)
GN,l(r) are analytical in l on the whole complex field C. More precisely: for
the closure functions qN,n(r) defined in (59) one has for each l ∈ C:

GN,l(r) =
∑

n≥0

qN,n(r)l
n , ∂rGN,l(r) =

∑

n≥0

∂rqN,n(r)l
n . (56)
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We point out that this result is true for any N ∈ Z and for any flow v(r) that
is non negative and analytical in 0.

We shall prove this result in two steps:

• in B.1 we prove that (56) is true when l belongs to a disk D ⊂ C which
we characterise.

• in B.2 we prove that D = C

We firstly recall the following definitions:
For a given value N ∈ Z of the axi-symmetric parameter, the operator ∆N is
defined as: ∆N ≡ ∂2r +

1

r
∂r − N2

r2
, so that ∆−N = ∆N . Hence we will consider

the case N ≥ 0 only.
The operator ∆N can be written under a divergence form:

∆Nf =
1

rN+1
∂r

(

r2N+1∂r

(

f

rN

))

. (57)

For each l ∈ C the Graetz function Gl,N is the only one solution for the
following ODE:











∆NGN,l = lv(r)GN,l(r)

GN,l

rN
(0) = 1

. (58)

We define the set of closure functions qN,n, for n ≥ 0, as follows:











∆NqN,n = v(r)qN,n−1(r) with qN,−1 = 0

qN,0

rN
(0) = 1 and

qN,n

rN
(0) = 0 for n ≥ 1

. (59)

B.1 Criterion of analy

ticity

Theorem 2. Let D be the convergence disk of the series

∑

n≥0

qN,n(1)l
n ,

where the closure functions qN,n are defined in (59), then for all l ∈ D:

GN,l(r) =
∑

n≥0

qN,n(r)l
n , ∂rGN,l(r) =

∑

n≥0

∂rqN,n(r)l
n

and ∆NGN,l(r) =
∑

n≥0

∆NqN,n(r)l
n

. (60)





Convergence of volume averaging method

Proof. We begin by proving that for a fixed l ∈ D the three series
∑

n≥0
qN,n(r)l

n,
∑

n≥0
∂rqN,n(r)l

n and
∑

n≥0
∆NqN,n(r)l

n are uniformly convergent for r ∈
[0, 1].
First of all the recursive definition (59) of the functions qN,n implies that: for
all n ≥ 0 qN,n(r) = rNψn(r) where ψn is a non negative, non decreasing,
continuous function on [0, 1]: for n ≥ 1

qN,0 = rN and qN,n(r) = rN
∫ r

0

1

y2N+1

∫ y

0

xN+1v(x)qN,n−1(x) dx dy, (61)

so that 0 ≤ qN,n(r) ≤ qN,n(1) and the series
∑

n≥0
qN,n(r)l

n is uniformly con-
verging on [0, 1] for l ∈ D.
On the same way ∆NqN,n(r) = v(r)qN,n−1(r) and so one has 0 ≤ ∆NqN,n(r) ≤
‖v‖qN,n−1(1) and the series

∑

n≥0
∆NqN,n(r)l

n is uniformly converging on [0, 1]
for l ∈ D.
Now one has:

0 ≤ ∂rqN,n(r) = NrN−1

∫ r

0

1

y2N+1

∫ y

0

xN+1v(x)qN,n−1(x) dx dy

+
1

rN+1

∫ r

0

xN+1v(x)qN,n−1(x) dx

≤ NrN−1qN,n(1) +
‖v‖
N + 2

rqN,n−1(1)

≤ C (qN,n(1) + qN,n−1(1)) ,

where the constant C only depends onN and v so that the series
∑

n≥0
∂rqN,n(r)l

n

is uniformly converging on [0, 1] for l ∈ D.
Now, for a given value l ∈ D we introduce the two functions defined on [0, 1]:

F (r) =
∑

n≥0

qN,n(r)l
n , H(r) =

∑

n≥0

∆NqN,n(r)l
n ,

since these are uniformly converging series and since
∑

n≥0
∂rqN,n(r)l

n is also a
uniformly converging series for r ∈ [0, 1], one can use the integration theorem
which implies that:

H(r) = ∆NF (r) , for r ∈ [0, 1] ,

and in the same time one has with (59) that H(r) = lv(r)F (r) and that
F

rN
(0) = 1. The unicity of the solutions of (58) ensures then F (r) = GN,l(r)

and this ends the proof.

B.2 Analyticity on the whole complex field C
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Lemma 2. The series
∑

n≥0

qN,n(1)l
n ,

is convergent on the whole complex plane C and so (56) is true for all l ∈ C.

Proof. With the integral formulation (61) on the closure functions qN,n one
has:

qN,n+m(1) =

∫ 1

0

1

y2N+1
1

∫ y1

0

xN+1
1 v(x1)qN,n+m−1(x1) dx1 dy1

=

∫ 1

0

1

y2N+1
1

∫ y1

0

x2N+1
1 v(x1)

. . .

∫ xm−1

0

1

y2N+1
m

∫ ym

0

xN+1
m v(xm)qN,n(xm) dxm dym . . . dx1 dy1 ,

and, since 0 ≤ qN,n(r) ≤ rNqN,n(1) (see (61)), we have:

qN,n+m(1)

qN,n(1)
≤

∫ 1

0

1

y2N+1
1

∫ y1

0

x2N+1
1 v(x1)

. . .

∫ xm−1

0

1

y2N+1
m

∫ ym

0

x2N+1
m v(xm) dxm dym . . . dx1 dy1

≤ ‖v‖m
∫ 1

0

1

y2N+1
1

∫ y1

0

x2N+1
1

. . .

∫ xm−1

0

1

y2N+1
m

∫ ym

0

x2N+1
m dxm dym . . . dx1 dy1 ,

where ‖v‖ = sup v(r). This upper bound can be computed explicitly

qN,n+m(1)

qN,n(1)
≤ ‖v‖m 1

2(2N + 2)
. . .

1

2m(2N + 2m)
:= αm ,

and α
−1/m
m is a lower bound for the radius of convergence of the series (2). One

can easily check that:

α−1/m ≥ 2
2N + 2

‖v‖ (m!)1/m ,

and so α−1/m grows up to infinity. As a result the series (2) is convergent on
the whole complex plane C.

C Invertibility of the operator L⋆
N and resolu-

tion of the closure problems

In this appendix we prove that the closure problems: α−1(r) = 0 and for n ≥ 1














L⋆
Nαn = v(r)αn−1(r)− 〈vαn−1〉⋆

α⋆
0 = 1 or α⋆

n = 0

+ boundary condition

(62)
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for a boundary condition either of a homogeneous Dirichlet, homogeneous
Neumann or Robin type:

αn(1) = 0 , ∂αn(1) = 0 or ∂αn(1) + γαn(1) = 0 , (63)

has one and only one bounded solution for each n ∈ N.

The operator L⋆
N is defined for N ∈ Z and for a normalised averaging op-

erator ⋆ (i.e. such that 〈1〉⋆ = 1) by:

L⋆
Nf = ∆Nf − 〈∆Nf〉⋆ , (64)

for the operator ∆N :

∆Nf = ∂2rf +
1

r
∂rf − N2

r2
f .

Because ∆N = ∆−N we will only consider here the proof for N ≥ 0.
We proceed in two steps: in C.1 we prove a lemma on the general solution
of ∆Nf = g and in C.2 we apply that lemma to the problems (62) for every
boundary condition (63).

C.1 A technical lemma

Lemma 3. Let g be a continuous function defined on [0, 1] and such that
g⋆ = 0.
Then for all A ∈ R the ODE:

∆Nf − A = g (65)

f ⋆ = M ∈ R (66)

has one and only one bounded solution on [0, 1].
Moreover this solution fulfils:

〈∆Nf〉⋆ = A ,

and then is a solution of:






L⋆
Nf = g

f ⋆ =M

Proof. We define the function ψ1(r):

ψ1(r) = −rN
∫ 1

r

1

y2N+1

∫ y

0

xN+1g(x) dx dy , (67)
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which is well defined since g is continuous in 0 for N ≥ 0, and the function
ψ2(r):

ψ2(r) =
rN − r2

N2 − 4
if N 6= 2 and ψ2(r) =

r2

4
ln(r) for N = 2 . (68)

Any solution of (65) is of the form:

f(r) = λrN + µr−N + Aψ2(r) + ψ1(r) if N 6= 0 or

f(r) = λrN + µ ln(r) + Aψ2(r) + ψ1(r) if N = 0.

Then all bounded solution of (65) on [0, 1] are on the form:

f(r) = λrN + Aψ2(r) + ψ1(r) , (69)

and (66) gives:

λ =
M − Aψ⋆

2 − ψ⋆
1

〈rN〉⋆
and so (65) (66) has only one bounded solution.
Since g⋆ = 0 one also has 〈rN〉⋆ = A

C.2 Resolution of the closure problems

• Homogeneous Dirichlet case.

We consider the solution f as in (69) of (65) (66) and search a value of A such
that f(1) = 0.
We have:

f(1) =
M − Aψ⋆

2 − ψ⋆
1

〈rN〉⋆ . (70)

So there is only one bounded solution f of (65) (66) such that f(1) = 0, it is
defined as:

f(r) =
M − Aψ⋆

2 − ψ⋆
1

〈rN〉⋆ rN + Aψ2(r) + ψ1(r)

A =
M − ψ⋆

1

ψ⋆
2

,

and A is well defined because ψ2 is negative and so ψ⋆
2 6= 0.

Consequently, the closure problems (62) for an homogeneous Dirichlet bound-
ary condition are well posed.

• Homogeneous Neumann case.

We consider the solution f as in (69) of (65) (66) and search a value of A such
that ∂rf(1) = 0.
By multiplying (65) by rN+1 and integrating over [0, 1] one gets:

∂rf(1) = Nf(1) +
A

N + 2
+

∫ 1

0

rN+1g(r) dr , (71)
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and since

f(1) =
M − Aψ⋆

2 − ψ⋆
1

〈rN〉⋆ ,

there is only one solution defined as:

f(r) =
M − Aψ⋆

2 − ψ⋆
1

〈rN〉⋆ rN + Aψ2(r) + ψ1(r)

A

(

1

N + 2
−N

ψ⋆
2

〈rN〉⋆
)

= N
ψ⋆
1 −M

〈rN〉⋆ −
∫ 1

0

rN+1g(r) dr ,

where A is well defined because ψ2 is negative and so
1

N + 2
−N

ψ⋆
2

〈rN〉⋆ 6= 0.

Consequently the closure problems (62) for an homogeneous Neumann bound-
ary condition are well posed.

• Robin case.

We consider the solution f as in (69) of (65) (66) and search a value of A such
that ∂rf(1) + γf(1) = 0 for γ > 0.
With (70) and (71) we have:

∂rf(1)+γf(1) = A

(

1

N + 2
− (N + γ)

ψ⋆
2

〈rN〉⋆
)

−(N + γ)
ψ⋆
1 −M

〈rN〉⋆ +

∫ 1

0

rN+1g(r) dr ,

and so there is only one solution defined as:

f(r) =
M − Aψ⋆

2 − ψ⋆
1

〈rN〉⋆ rN + Aψ2(r) + ψ1(r)

A

(

1

N + 2
− (N + γ)

ψ⋆
2

〈rN〉⋆
)

= (N + γ)
ψ⋆
1 −M

〈rN〉⋆ −
∫ 1

0

rN+1g(r) dr ,

where A is well defined for γ ≥ 0.
Consequently the closure problems (62) for an homogeneous Neumann bound-
ary condition are well posed.
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[19] M. A. Lévêque, Les lois de transmission de la chaleur par convection,
Annales des Mines, Paris, 13 (1928), pp. 201–409.

[20] E. M. Lungu and H. K. Moffat, The effect of wall conductance on

heat diffusion in duct flow, J. Engng. Math., 16 (1982), pp. 121–136.

[21] C. Mei, J. L. Auriault, and C. Ng, Some applications of the homog-

enization theory, Advances in Applied Mechanics, 32 (1996), pp. 278–348.

[22] G. N. Mercer and A. J. Roberts, A center manifold description of

contaminant dispersion in channels with varying flow properties, SIAM J.
Appl. Math, 50 (1990), pp. 1547–1565.

[23] A. Nakayama, F. Kuwahara, A. Naoki, and G. Xu, A volume

averaging theory and its sub-control-volume model for analyzing heat and

fluid flow within complex heat transfer equipment, in 12th International
Heat Transfer Conference, J. Taine, ed., vol. 2, Grenoble, 2002, Elsevier,
Paris, pp. 851–856.

[24] A. Nakayama, F. Kuwahara, M. Sugiyama, and G. Xu, A two-

energy equation model for conduction and convection in porous media,
International Journal of Heat and Mass Transfer, 44 (2001), pp. 4375–
4379.

[25] D. A. Nelson, Invited editorial on ”pennes’ 1948 paper revisited”, J
Appl Physiol, 85 (1998), pp. 2–3.

[26] M. Pedras and M. D. Lemos, Macroscopic turbulence modeling for

incompressible flow through undeformable porous media, Int. J. Heat and
Mass Transfer, 44 (2001), pp. 1081–1093.

[27] H. H. Pennes, Analysis of tissue and arterial blood temperatures in the

resting human forearm., J. Appl. Physiol., 1 (1948), pp. 93–122.

[28] C. G. Phillips, S. R. Kaye, and C. D. Robinson, Time-dependent

transport by convection and diffusion with exchange between two phases,
J. Fluid Mech., 297 (1995), pp. 373 – 401.

[29] M. Quintard and S. Whitaker, Convection, dispersion, and interfa-

cial transport of contaminants: Homogeneous porous media, Advances in
Water resources, 17 (1994), pp. 221–239.

[30] A. J. Roberts, The utility of an invariant manifold description of

the evolution of a dynamical system, SIAM J. Appl. Math., 20 (1989),
pp. 1447–1458.





Charles Pierre, Franck Plouraboué and Michel Quintard
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