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Abstract

The monodomain equations model the propagation of the action potential in the human heart: a very
sharp pulse propagating at a high speed, whose computation requires fine unstructured 3D meshes. It
is a non-linear parabolic PDE of reaction-diffusion type, coupled to one or several ODE, with multiple
time-scales.

Numerical difficulties, such as unstructured meshes and stability are addressed here through the
use of a finite volume method. Stability conditions are given for two time-stepping methods, and two
example sets of ODESs, convergence is proved and error estimates are computed.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Computer models of the electrical activity in the myocardium are increasingly popular:
the heart’s activity generates an electromagnetic field in the torso, and produces a surface
potential map whose measure is the well-known electrocardiogram (ECG). It gives a non-
invasive representation of the cardiac electrical function.

This paper focuses on the study of a 3D finite volume numerical method used to compute
the electrical activity of the myocardium on unstructured meshes, and specifically gives
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conditions on the time-step to ensurd @ stability property, for an explicit and a semi-
implicit time-stepping method. Consequently, convergence results are proved.

The electrical activity in the torso was first demonstrated to be directly connected to the
heart beat more than 100 years 486]. It was first suggested to be well represented by
a dipole. Afterward, more complex models based on dipole representation have also been
used among which the famous oblique dipole lay@r This is the top-down approach,
providing heuristic models.

Conversely, in the 50's Hodgkin and HuxIgy1] explained how the electrical activity of
some nerve cells can be modeled from a microscopic description of ionic currents through
the membrane. Due to the sophistication of experimental techniques, there are currently
many such models, s¢&2] for reviews.

Recentstudies in electrocardiology assume the anisotropic cardiac tissue to be represented
at a macroscopic level by the so-called “bidomain” model, despite the discrete structure of
the tissue. We refer t{8] for a mathematical derivation of the bidomain equations, and to
[9,12] for reviews on the bidomain equations. A simpler version called the “monodomain”
modelis obtained, assuming an additional condition on the anisotropy of the tissue. Although
the “bidomain” is far more complex, both models are reaction-diffusion sysfa4] of
the general form

o,w=Aw+ F(w), 1)

whereAw=V-(o(x)Vw) anda(x) is a positive symmetric matrix, eventually with Kek:
{0}. Only the monodomain model is addressed here.

Any microscopic description of the cell membrane can be inserted into the monodomain
equations, providing a large variety of macroscopic models, ranging from 2 to about 100
equations. Although the approach would be the same for complex ones, this paper only treats
the case of two simplified two variables models, namely the well-known FitzHugh—Nagumo
one[6] and the one from Aliev—Panfildi8]. The latter is very well suited to the myocardial
cell, and often used in practical computer mod&ig21,22]

Computer models of the heart based on these equations (mono or bidomain, two or more
ionic currents) currently are very popular in numerical electrophysiology. Because there may
be many different time scales in the reaction terms, the solutions exhibit sharp propagating
wave-fronts. For this reasons, only the recentimprovement of computing capabilities allow
3D computations to be achieved. Moreover, until very recently, they were restricted to
differences methods on structured grids and simple geomgtrig®,13] A few researchers
recently started to study computations on 3D unstructured meshes, coupled to an explicit,
semi-implicit or fully-implicit time-stepping methofil4,2]. The analysis of a Galerkin
semi-discrete space approximation was conducted by Sanft&lifi To our knowledge,
there has been no attempt at studying the effects of the time-stepping method on the stability
of the approximation. As a matter of fact the problem of stability in time of fully discretized
approximations is as difficult as the problem for global stability for the continuous solution
of reaction-diffusion systems.

The mainissue of this paperisto study the theoretical stability criterion for the explicitand
semi-implicit Euler methods; and to derive error estimates for the approximate solutions.

Our idea is based on the proof of existence of global solutions to reaction-diffusion
systems as presented24]: solutions for < [0, T) extend to any > 0 due to the existence
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of strictly contracting regiong for the flow F(w). It is known[24] that such regions are
invariant sets for regular enough solutions of the system (1). Here, we prove in Theorems 7,
9 and 11 that under suitable assumptions on the time-step, the régamesstill invariants

sets for the discrete solution, proving as a consequefttbounds on the discrete solution.

The convergence is proved and error estimates established in Theorem 13.

Among the numerical methods suited to 3D computations on unstructured meshes, we
choose afinite volume method introduced and analyzgs] jwell suited to general unstruc-
tured meshes and especially to mesh refinement, needed here to capture sharp wave-fronts.
Moreover, it provides a sort of maximum principle, that may not be achieved for most finite
element formulations but is the key ingredient of our proof.

The next section details the mathematical model, and we recall some needed results of
existence and stability for solutions for reaction-diffusion systems, essentially based on
[24,4,10] Section 3 briefly explains the finite volume technique for space discretization,
and Sections 4 and 5, respectively, are concerned with the stability and convergence results
and proofs.

2. The system of partial differential equations
2.1. The macroscopic monodomain model for cardiac electro-cardiology

At a microscopic scale, the surface membrane of the myocardial cells delimits an intra-
and an extra-cellular medium, both containing ionic species. The model accounts for the
dynamics of the trans-membrane ionic currdpgsand difference of potential, per surface
unit. The membrane is considered to have a capacitive behaviour, so that the total current
through the membrane is

du
Ca‘i‘lion:h (2)

whereC is the capacitance per surface unit of the membrane. Furthermore, the cells are
self-organized into myofibres in order to form the complete myocardium.

At a macroscopic scale, due to a homogenization pro@sshe trans-membrane po-
tentialu is defined on the whole hea@ considered as the super-imposition of the intra-
and extra-cellular medium. From the microstructure of the muscle fibres is derived at each
pointx € Q the positive definite tensor of conductivityx) = diag(c;, ¢/, ¢;) in the local
orthonormal basigl, n1, n2), wherel is a unit vector tangent to the fibre at With the
conductivity, the volumetric current can be expressed in termas afd Eq. (2) becomes

dl
dr

wherep > 1 is the ratio of membrane surface per unit of volume.

The fibres are tangent to the boundacy of the heart. As a result the normal direction
to the boundary at point € 022 is an eigen-direction fos(x) and the conductivity tensor
satisfies the following boundary condition:

Vx € 02, o(x)-nkx)=ix)nkx) (Ax)>0), 4)

wheren is the unit outward vector field odx?.

pC + plion=V - (6Vu), 3
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First modeled by Hodgkin and Huxley jh1], the ionic currenfi,n, decomposes into the
contribution of several ionic channels as following:

fion=Ix; + Ix, +--- + Ix,. ©)

The states of the channels (open-closed) are described by gating vaviables ..., v,)
which are controlled by ODEs

dvi

E=88i(ugvi), (6)

where the parameterk 1 means that the recovery variables have slow dynamics compared
to the potential:. The ionic current through the channél depends om andv,

Ix; = — fi(u, v). (7)

Based on the original version, many such models have been consiijcedording to less
complex experimental studies of the cells membrane. Simplified versions of these models
have been proposed, the simplest of which is the well-known FitzHugh—Naguni®, b6k

It writes

Iion=—fw,v)=uu—-D@u—a)+v, gu,v)=ku—mv, (8)

where O<a < 1 andk > 0 are given parameters. It will be referred to as N model

For, it is adapted from the original model of Hodkin—Huxldy], it suits the behaviour

of a nerve axon. For the myocardial cells, a simplified model was proposed by Aliev and
Panfilov[18] and has been widely used in 3D simulations of the human ventficie®1]

It writes

lion=—f(u,v) =ku(u—(u—a)+uv, gu,v)=ku(l4+a—u)—v, (9

wherek > 0 and O< a < 1 are still given parameters. It will be referred to asAtiremodel
For sake of simplicity, only the case of tA€ andFHN models are addressed, although
the extension of our results to more complex ones shall be straightforward.
Egs. (3), (5)—(7) rewrites in a dimensionless framework and for one gating vaviable

eu; = &2V - (6Vu) + f(u, v), (10)
UV = g(l/t, U)v (11)

where the functiong, g : R? — R are given by (8) for th&HN model and by (9) for the
AP model.
The potential: shall satisfy a Neumann boundary condition:

Vx €02, o(x)Vu-n(x)=0, (12)

meaning that no current flows out of the heart. No additional boundary condition is needed
concerning, since itis ruled point wise by an ODE. Of course, an initial data is provided:

Vx € 2, u(x,0) =up(x), v(x,0) =uvg(x). (13)
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2.2. Existence, uniqueness and regularity of solutions

General results for the Cauchy problem (10)—(13) are recalled here. Such systems of PDE
have been widely studigd0,24,4] Only basic non-exhaustive and non-optimal results are
recalled, that occur under reasonable assumptions expected from the physiological data.
Furthermore, a framework for the proof of existence of solutions far-ald is drawn, that
the numerical analysis will follow.

Theorem 1 (Local existence and uniquengs3he Egs (10)—(13)are considered on a
domainQ c R? (d =1, 2, 3) with a C? regular boundaryQ. The conductivity tensar
is assumed'! regular onQ and such that

VxeQ, VieRY, Elg(x)é=0.

The function f and g are assumed locally Lipschitthe initial data satisfyg € H2(Q),
uo verifying the boundary conditiof12); andvg € L°°(€), then the systerfl0)—(13)has
a unigue solutionw (x, 1) = (u(x, t), v(x, t)) on2 x [0, T) for someT > 0, in the following
(weak sense

e the mapping — w(r) € L?(Q) x L>®(Q) is continuous o0, T') with w (0) = (uo, vo),

e the mapping — w(r) € L%(Q) x L®(Q) is Frechet differentiable ori0, 7') with
derivativer — dw/dz(r) € L%(Q) x L*®(Q),

e fors € (0, T), we haveu(-, 1) € H3(Q), f(w(-, 1)) € L3(Q) andg(w(-, 1)) € L®(Q),

e forz e (0, T), Egs (10), (11)and(12) respectively hold ir.2(Q),L>°(Q) and L2(0Q).

e Moreover with the regularity assumed on the initial datiae mapping — w(t) €
L°(Q) x L°°(£) is continuous o0, 7).

At last, note thatT = +oc if the reaction termsf, g are globally Lipschitz ori?.
Lemma 2 (Regularity. With the additional assumptions

o the derivatives of are v-Hélder continuous o2, for somev > 0 (i.e. ¢ € C1+"(Q)),
e ¢ is uniformly elliptic ong2,

>0, VxeQ VieR! Eox)ézalé?
¢ the initial data is such thaitg € C"(Q2) for somev > 0,

the solutionw(x, ¢) is continuously differentiable in the variabteon Q x (0,T) and
u(-, 1) € C%(Q) fort € (0, T). Sg (10)—(13)hold in a classicalstrong sense

2.3. Stability of solutions and invariant regions
The solutions of Theorem 1 exists only fokQ < T', whereT depends both on the initial

data and onf andg. But of course, only existence for all time- 0 makes sense in the
physiological phenomena. For our solution to be relevant with the physiological framework
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Fig. 1. Invariant regiong’ for FHN (left) andAP (right) models.

it is moreover needed to have uniforb3® bounds on: andv. This is the main difficulty,
referred to astability. It can be studied in two ways.

First, assuming a polynomial growth at infinity fgrandg, Sobolev embeddingd 5]
are used to uniformly bound andv in Sobolev spaces and then find solutions for all
time 7 >0, see[10,25] Such techniques can be applied to solutions with weaker reg-
ularity as in Lemma 2. Howeverl.® bounds usually are unreachable although
physiologically relevant.

The second way to study the stability is to constrimtfariant regionsas developed
in [24,4]. An invariant regionfor the Cauchy problem (10)—(13) is a closed sulSet
R? such that a solution of (10)—(13) having its initial data insifle interior remains
inside ~. Such a solution is uniformly bounded ih*® and moreover, since the
restriction of f and g to X are Lipschitz continuous, it has an infinite lifetime
T = +o0.

The second method is detailed here because it provides unifgtimounds and is really
perfectly suited to the numerical analysis below. It requires

e a good behaviour of the non-linear terrfigndg, so that invariant sets exist, seégg. 1,
e a strong maximum principle for the operaior> V - (6Vu),
e regular solutions in order to apply the maximum principle.

Invariant regions for (10)—(13) are built by considering invariant region&ofor the
reactive flow(u, v) € R? > (f(u, v), g(u, v)) € R?. For the heat equatid)u =V (¢Vu),
intervals[u_, u ] are invariant regions. As a consequence, invariantsere searched in
the following form:

2 ={(u,v) € RZ, u_<u<Luy, vo<v<vyt=[u_,uy] x [v_, v4]. (14)



Y. Coudiere, C. Pierre / Nonlinear Analysis: Real World Applicatiginng) mi—in 7

Definition 3 (Rectangular invariant s¢t The rectangular subset B, % =[u_, uy] x
[v—, v4+]is an invariant set foy andg if

u=u_,v_<v<vy = f(u,v)>0,
u=uy,v_<v<vy = f(u,v) <0,
v=v_,u_<u<uy = gu,v)>0,
v=vg,u_<u<us = g(u,v) <0.

Y(u,v) € 2,

For an invariant rectangular regiah(Definition 3) to be invariant for (10)—(13),srong
point wise maximum principle is needed here. Remark that a simplification occurs in the
scalar case (with one equation) where a Stampacchia-troncature technique can be used
(se€[3]).

Lemma 4 (Strong maximum principje Let Q be an open bounded subset®f whose
boundarydQ hasC? regularity. Letu € C2(Q) satisfy the boundary conditiof12) for a
tensore € C1(Q) satisfying the boundary conditid#).

If u has a maximun{resp minimumn) for x € Q thenV - (6Vu)(x)<0 (resp V -
(6Vu)(x) =0).

With Lemma 4 invariant regions according to Definition 3 are invariant regions for regular
solutions of the PDE.

Theorem 5 (Invariant set for the PDE Consider the system of Eq4.0)—(13)with the
assumptions of Lemma Moreover assume that the conductivity tenserverifies the
boundary conditior{4).

If 2 is a rectangular invariant set foy' and g, according to Definitior8, then it is an
invariant region for(10)—(12):

VxeQ, wolx)eint(X)=Vi>0, VxeQ wx,i1) el

and thus such a solutiom has an infinite lifetimeg’ = +oc.

Remark 6. For ¢ = Ald, a proof has been given by Smoller[24] when assuming that

the boundary values of the solutiom, v)aq, Which are unknown here, remains insitlp

and by Shcherbakov if23] for a homogeneous Neumann boundary condition in the case
of the FHN model (8). Lemma 4 and Theorem 5 extend these results to the general case
(10)—(12) for an anisotropic conductivity tensor satisfying (4).

Examples of invariant regions for tii#@N or AP models (8), (9) are displayed ig. 1
Note that these invariant regions may be built as big as wishes, so that any regular solution
of (10)—(12) remains uniformly bounded for all timegz 0.

Proof (Lemma 4. Atan interior pointc € Q it is obvious. Assume that has a maximum
forx € 0Q. With condition (4) one can constructan orthonormal basig &4, .. ., &) such
thato(x)=diag(41, ..., 4g) iIn % (with 4; >0,i=1, ..., d) and such thaf, is normal tooQ2
atx. Condition (12) together with (4) give’%lu(x) =0. The family(&,, ..., &;) generates
the tangent hyper-surface @f at pointx. Sinceu is C2(3Q) and its restriction t@Q also
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has a local maximum at, we haved; u(x) =0fori =2, ..., d. Consequently e C2(Q)
has a maximum i implies that@?u(x)go (i=1,...,d). Now sinces € C1(Q) one
hasV - (aVu) (x) = 2202 u(x) + - - + 240% u(x)<0. O

Proof (Theorem %. With the assumptions of Lemma 2, let= (u, v) be a solution of
(10)—(12) with initial valuew(0, -) such thatw (0, x) € int(X) for all x € Q. We recall that
u is C2(Q) with respect tor and thatw is C1 with respect ta on Q x (0, 7).

Imagine thatw (x, ¢) reaches the boundady of X at timeto and thatw(x, t) € X for all
t<to. Sincew(?): [0, T) — L°(Q) x L*°(£) is continuousty > 0. Letxg € 2 be such
thatw (xg, 7p) € 0.

We first assume thab (xg, 70) is on the right side 0D : u(xp, 70) = u4+ andv_ <
v(xo, f0) <v4. On one hand, Definition 3 implies thgt(w (xo, 7)) < 0; and on the other
handu(-, o) satisfies the conditions of Lemma 4 amko, fo) = maxg u(-, to). As a con-
sequenceyY - (6Vu)(xo, o) < 0. It proves thad,u (xo, fo) < 0. The functiord, « being con-
tinuous on®Q x (0, T), there exists a neighbourhoddof (xg, 7o) in Q x (o, T) such that
0,u <0onU, and therefore (x, t) < max u(-, fo) = u4 onU. Now imagine thatw (x, t)
is on the top side ok : v(xo, o) = v+ andu_ <u(xo, o) <u4, then sinceg < 0 on that top
side,0,v(xo, 10) < 0 too and so there exists a neighbourh@odf (xg, 7o) in Q x (to, T)
such thaw(x,7) <vy onU.

Altogetherw cannot get out oF even at a corner point where the two precedent reasons
both hold.

To end,w remaining uniformly bounded, the reaction terfhandg can be considered
as uniformly Lipschitz continuous and with the last remark of TheoremHas an infinite
lifetime T' = +o00. [

3. The finite volume approximation
3.1. Meshes, spaces and notations

We shall approximate the solutions of system (10)—(12) with a finite volume method
according to the framework ¢5], on admissible meshes adapted to the conductivity tensor
o. An admissible mesh a® (a bounded open subset Bf whose boundary is piecewise
c1) adapted ta is given by

(1) a set7 of polygonal connected open subsetdhfcalledcellsand denoted by,
such that

Q0= () K. VK.Le7, K#L=KnNL=0.
KeT

In the followingm (K') will stand for the measure of acell € 7. ForacellK € 7 lying
on the boundary, the eddgé N 8Q might be ac* curve, aIIowmg non-polygonal domains
X. Two distinct cellsk andL € 7 are called neighbour cells € N L has a non-zero
(d — 1)-dimensional measuré.€. non-zero surface i@ = 3 or non-zero length ifl = 2).
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On each celk € .7 a (positive definite) conductivity tense € M¢* is defined by
1
VK € 7, O'KZM/U(X)dX. (15)

(2) A set of interfaces, denoted hythat are of two types:

e either there exists two neighbour ceRs L € .7 such that = K N L, e is an internal
interface and we set= K |L;

e or there exists one cek € .7 such thatk N 0R has a non-zer¢d — 1)-dimensional
measure and such that= K N 0Q, e is an external interface.

The set of internal interfaces is denoted%y and the set of external interfacesdy’, and
S0.¥ =.%*U 0.%. The(d — 1)-dimensional measure fere .% ism(e) and it is non-zero.
Fore € & andK € J such thak C 0K we denote byng . the unit vector normal te
and pointing outward ok .

(3) Two sets of pointst’ = (xg)xes, % = (Ve)oca, Called cells and interfaces centres
and suchthaty € K, y. € e. We, furthermore, assume that for each éelk .7 and each
interfacee € & such that C 0K,

Ye — xk is co-linear toogng . (16)

We denote byik . the euclidean distan¢e, —xx | and bylk . the (positive) proportionality
coefficient betweewn g nk ., and the unit vectoty, — xx)/dk .:

Ye — XK
K,e

OkNK .= iK,e and /"LK’e > 0. (17)
Additionally, the boundargK of any cellK € 7 can be spitted into internal and external
interfaces, and we denote b, K*, the subsets of# such that

U e =0K, U e=0K NQ.

ecok ecOK*

We also define the size of the mesh as the maximum of the cells’ diameters,

sizd.7 ) = max diam(K). (18)
Ke7

As a consequence, a mesh is described by the collection”, 2, %), but will be referred
toas7s .

Examples of such meshes are giver{5h In the isotropic case they are 2D meshes
of triangles or 3D meshes of tetrahedra in which the centgesre the centres of the
circumscribed circles or spheres of the céflsand more generally Voronor” meshes.

On an admissible mes#, the finite volume approximation for the solution of (10)—(11)
is a couple of functionsr = (ug, v7) piecewise constant on the celse 7.

As a consequence, we define

L3T) = {u,gj—z > ukig. Wk)ges € RV} C L2(Q), (19)

KeT
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where N4 is the cardinal of7", andy g (x) = 1 for x in K and 0 elsewhere. The space
L2(7) is naturally handled with the inner product induced 13(Q) and the associated
norm

wr v)z= Y ugvkm(K), Nuzlfz= Y lugl’m(K). (20)

KeT KeT

This euclidean structure is extendedt®.7) x L2(7). Forw = (u, v) and® = (ii, D)
we have

(w, W) 2= (u, )2+ . D)2, (w2, = lul?, + [lv])Z,. (21)
3.2. Space discretization

In order to construct the finite volume approximation of system (10)—(11), the balance
equation is written on any cek as

sgfudxzszf O'Vu-ans—}—/ f(u, v)dx, (22)
dr Jg oK K

E/ vdx:/ g(u, v)dx. (23)
dr K K

Suppose thateach valug, vk of the discrete solution approximates the mean valug oh
the exact solutioriu, v), then the discrete solution shall satisfy the following semi-discrete
equation

d 2
8%(1‘) = mi(;K) );:K (Z)K,e(uﬁ')m(e) + fK(l/tg", Uto]), (24)
dU[( . B .
T(t)—gl((”f,vy). (25)

The termsfx (us, vy ) and gk (u 7, vy ) shall approximate Am(K) fK f(u,v)dx and
1/m(K) fK g(u, v) dx and are taken as follows:

fxug,vy)= flug,vg), gxlug,vy)=gk,vg). (26)

The term¢ . (u7) approximates the mean flux aloags . outward ofK, specifically
1/m(e) fe(aVu) - Ng ds. On the external interfaces the boundary condition (12) os
taken into account by fixing x , = 0. On the internal interfaces we approximate the flux
as follows:
1

m(e)

Ye — XK
dK,e

/(O'VM) ‘Ng ds = Vu(ye) - (0xNk.e) = Ak, e Vu(ye) -

An approximation of the derivativ€u(y,) - (y. — xx)/dk . Of u at pointy, is established
by adding auxiliary unknown@:, ).« at each pointy.),co

XK Ue — UK

Ye —
Vu(ye) - ~
¢ dK,e dK,e
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An additional requirement is that the numerical fluxes satisfy the conservativity property,
V€=K|L€y*, ¢K,€:_¢L,(3' (27)

This property enables us to determine the additional unknawrsnd to compute the
numerical fluxes on the internal interfaces

Ve=K|L € S*, ¢g,=rT(uy—uxg), (28)
where
Ak e/
z, MKl ey > 0. (29)

;LK,edL,e + )vL,edK,e

The resulting approximation of the fluxes is consistent, as shosj.in
Consequently, the semi-discrete finite volume formulation is

du[( _ 82
s =0 H(%m To(ur —ug) + fug, vg), (30)
d
% (1) = guk. vg). (31)

We recall that in (30)—(31) the boundary condition (12) is taken into account by fixing
¢ . = 0on the external interfaces.

The most natural initial data is given for &l € 7 by wg (0) = wo(xg), or wg (0) =
1/m(K) [ wo(x)dx.

The discrete operatot ;- defined onl.2(.7) by

1
Ariug e LX) > z7 € LAT), zx=—— Z To(up — ug)
m(K)
e=K|LedK*

(32)

approximates the continuous elliptic operaior> V - (6Vu).
At last, the semi-discrete system of ODEs simply writes

du g

6= () =PAzug + fluz, vy), (33)
dl)a‘
5 O =8 v7). (34)
t
The operator ;- is symmetric orl.2(.7") and verifies
Aguz.uz)zo=— Y. Telur —ugl® (35)

e=K|LeS™*
ThereforeA 7 is non-negative and its kernel is the subspace of the constant functions on
Q, and define the following semi-norm drf(7),

2 2
url;=—(Azuz.uz)z= >  tlup —ugl? (36)

e=K|LeS™*
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With this semi-norm the space of the finite volume functions will be referred #'a%).
Unlike in the case of a finite element Galerkin formulation, the spdéé7) is not a
subspace oH1(Q) but only a discrete equivalent.

3.3. Time-stepping methods

Given an admissible finite volume mesh as defined in Section 3.1, we choose a time-step
At > 0 and consider the forward Euler method (37)—(38) and the backward Euler method
(39)—(40).

n+1 n

u' T —u'-
SJA—[J 2A/Lt/~+f(1/ta~,l)r), (37)
vn+l _ n
Z =gy, vy (38)
At T J
uttt
s LT = A ), (39)
il
T g
A Wy (40)

4. Stability analysis

As explained in Section 2.3, any regular solution initially in a contracting rectaXigle
(Definition 3) exists for all time >0 and remains trapped ib. We shall prove in this
section that

(1) the semi-discrete solutions of the ODEs (33)—(34) initiall¥iexist for allz > 0 and
remain trapped i as well,without any additional regularity assumption on the mesh
(2) the discrete solutions given by (37)—(38) or (39)—(40) initiallgiare well-defined for
all n >0 and remain trapped i as well, under classical conditions on the time-step
At.

Item (1) justifies the choice of a finite volume method, and proves that numerical instability
are only caused by the time-stepping method. Bheconditions in item (2) splits into
constraints due to the discrete elliptic operatgr and the non-linear source terryig, g .

The balance between these constraints is ruled by the ratio of the meslizsizZe) to
the time-scale factatr, showing up the main question of the discretization: how should the
mesh and the time-step be chosen with respect to the vakuanaf the desired accuracy?

We recall that invariant regions can be built as big as one wished~ged) so that
any solution of (10)—(12) associated with a bounded initial data can be approximated with
numerical stability.
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4.1. Stability for the semi-discrete problem

Given any initial dataw% e L2(7) x L2(7), the system of ODEs (33)—(34) has a
unique solutionw € C1([0, T); L2(7) x L?(7)), for someT > 0, becausef andg are
locally Lipschitz on[R?.

Theorem 7. LetX C R?be arectangularinvariant s¢Definition3). ThenZ is aninvariant
region for the semi-discrete syst€&8)—(34):

VKe7, wleX=Vvi>0, VKeJ, wgt)eX

andw has an infinite lifetim&” = +o0.

The proof of the theorem is supported by the following lemmawhich is a discrete analogue
of Lemma 4.

Lemma 8. Let.7 be an admissible finite volume meshédbhdapted to the conductivity
tensorg and A s~ be the operator defined {$2).

If uy has a maximum(resp minimun) for K € 7 then {Ayuz}x <0 (resp
{Azuzltx =0).

Proof (Lemma 8. If uy € L2%(7) has a maximum fork € 7 then for any cell
L € 7 neighbouringk one hasug >uy. As a resultu; — ug is non-positive and so
{A7uz}r<0. U

Proof (Theorem J. Let X be an invariant rectangle and® € L2(7) x L2(7) satisfy
w% € Xforall K € 7. ConsiderT > 0 and the solutiow € C1([0, T1; L?(7) x L3(T))
of (33)—(34) with initial dataw?,.

Assume now thaty reache$ at timezg >0 and thatwg (r) € 2 forall K € .7 and all
t € [0, 10]. Let K € .7 be such thatvg (19) € 0.

First assume that g (zp) is on the right side 082: ug (t9) = u4 andv_ <vg (t9) <v4.
Then, on the one hand Definition 3 implie&wgk (f0)) <0, and on the other hand
maxy ¢z uy (to) = uy = uk (to) SO that propertyA s u s (o)} x <0 (Lemma 8). As a result
we have @ g /dt (1) <0 and sauk (1) <uy for ¢ € (tg, to + 0) for somed > 0.

Now if wg (tg) is on the top side oF, vk (t9) = vy andu_ <ug (tp) <u., sinceg <0
on that top side thed, vk (f9) < 0 and savk (1) < vy fort € (to, to + 6).

Altogether,w cannot get out of, even at a corner point where the two precedent reasons
hold.

To end, sincav remain uniformly bounded it has an infinite lifetinfe= +oc0. [

4.2. Stability for the semi-implicit Euler method

We recall that the operatot 7~ is non-positive, so that ld- ¢éArA & is symmetric and
positive-definite for any\r > 0. As a consequence, givem-, v'";-), Eg. (39) has a unique
solution; and for any'-, Egs. (39)—(40) define a unique sequeqeg-),,cn in L%(T) x
L2(T).
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The following lemma gives a condition akr for w’- to remain inX if wg_ €.
Theorem 9. Let X be a rectangular invariant s¢Definition3). If the time-step\r verifies
At
e |z

then is an invariant region for the solutiow’-), cn of (39)—(40):

<1, At

mzin 0,8

<1, (41)

VK € 7, w%eEéVneN, VK € 7, wk € 2.
Remark 10. Condition (41) can be specified with(u) = —u(u — a)(u — 1):

o for the FHN model (8), we have
mzin 0, f| =max(|F'(u_)|, |F'(uy))), ’mzin a,,g‘ =1,
o for the AP model (9), we have

=1.

mzin 0, f|=max(|F'(u_) — vyl [F'(uy) — vy), ‘mzin 0,8

This yields explicit computations of the time-step in applied cases.

Proof (Lemma 9. Egs. (39)—(40) can be rewritten as

(d — eAt At =y + Atf (') fe, VT = vl + Arg(wl),

for all n € N, which has a unique solution (see above).
Let us consider the following function defined &3:

d(w) = (P1(w), Po(w)) = (u + Arf (w)/e, v + Arg(w)).

Under condition (41) one hds ¢, >0 and so sup ¢y = 1 (uy, v) =uy + Atf(uy, v)/e
for somev, v_ < v < v;. But Definition 3 ensures that(u -, v) < 0and then supg, <u.
Similarly, infg ¢1=>u_ andv_<infyz ¢, gsupz ¢o,<vy.As aconsequence,(X) C 2.
Now letw?- € LZ(J )x L2(7) satisfyw® e Zforall K € 7 .Sincep(X) C X we have
({ad — SAtA/ yul g, vy) e Zforall K € 7.1f K € 7 is such thau}< =max,cs ut,
then{Ag—u_f}K <0 (this is Lemma 8) and thef(ld — ¢éAtA 4 )uJ }k <ug implies that

ut =max cy ut <uy.Similarly, inf e ut >u_ and sowl e Xforallk e 7. O

4.3. Stability for the explicit Euler method

Given anyw?, € L2(7) x L?(7), the discrete system (37)—(38) defines explicitly a
unique sequencen’s), ey in LA(7) x L(F).
The following lemma gives a condition akr for w’- to remain inX if wg. €.
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Theorem 11. LetX be arectangular invariant s€Definition3). If the time-step\r verifies

€ Zf‘i‘m
m(K) ¢ £

ecoK*

VK € 7, At

<1, (42)

i < gl A
wgfauf‘ 1 t

mzin 0,8

then'is an invariant region for the solutiow’7),,cn of (37)—(38):
VKe7, wleX=VneN, VKeT, wiel.

Remark 12. There is a classical condition of regularity for a family of admissible meshes
that is there exist uniform constantsf; > 0 such that

Ve=K|L €9, aAx<dg.,+drL., VKeZ, Axm@K)<pm(K),

whereAx is the size of the mesh . For such a family of admissible meshes, and in the
isotropic casé& - (¢Vu) = DA(u), the first stability condition (42) becomes

This condition combines the classical stability conditions for both the heat equétion
DA(u) and the ordinary differential equatian= f ().

Proof (Lemma 11 Egs. (37)—(38) can be rewritten as

u = (1d + eAr A 7 )u' + %f(w’,}),

vgjl =5 + Arg(w'’y).

LetwY € L3(7) x L3(7) satisfyw$ € X forall K € 7. ForanyK € 7,
¢~ (w) <ug <Pt WP,

where the two functiong™ and¢ ™ are defined by

A A
O =ut e 3wl — w0+ f),
" ecoK* ¢
A A
Pr =ut e S s~ w0+ W)
ecoK*

The stability condition (42) implies that, ¢~ >0 andd, ¢ >00nZx, and then,
u_ +Atf(u_, v?() gu}( Suy + Atf(uy, v%).

At last, £ being an invariant rectangle (Definition 3j(u_, v$) >0 and f (u, v%) <0.
As a consequence, <uk <u.. Similarly we haver_ <vi <vy andatlastwl e 2 for
alKk e s. O
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5. Convergence analysis

Convergence of the finite volume approximations and error estimates are proved in this
section.

The functionsf, g are supposed to be those of #ldN or AP model, and the other data
Q, o, w? = (u°, v% are supposed to fulfil the assumptions of Lemma 2 and Theorem 5,
in order for the solutionw(z) to exists for allt > 0 in a fixed rectangle’, depending only

0

onw-.

In this case, the soluticn (x, 7) is C2(Q) with respect tac andC1([0, +00)) with respect
tor.

Given an admissible finite volume mesh as defined in Section 3.1Aasd, we denote
by (0"),en the sequence defined by (39)-(40) or (37)—(38) afjd= w°(xx) for all
K eJ.

Under the condition (41) or (42), both andw’- remain inZ.

In order to compare the discrete and the contlnuous solutions we introduce the sequence
(W) nen IN L2(T) x L?(T) defined by

wy =w(xg, ") = (wlxg, t"), vixg, ")). (43)
The error(e’;),cn Writes

e =wl — W' e LAT) x LA(T). (44)

’\r\}:‘»

Theorem 13 (Convergence and error estimateSuppose that the data fulfil the assump-
tions of Lemma& and Theorens. Assume furthermore that c R?is an invariant rectangle
(Definition3) for f andg such that the initial datav® is in X’s interior.

We additionally assume thatw and the second-order derivatives in sp@@ieu ofu are

uniformly bounded o x (0, T'].
. Letw'- be the approximation of was defined(BY)—(38) 6r in (39)—(40))with the initial
ata

VK € 7, 0% =uwolxg) = (uo(xg), vo(xk)). (45)

If the stability conditior{41) (or (42))relative toX is satisfiedthen there exists two constants
C andy, only depending on the dat&, w®, f, g andX) such that fomAr < T the error is

eIl 2 < CelT (sizeT) + Ar).

Proof (Theorem 18 We shall prove Theorem 13 for the Euler semi-implicit scheme

(37)—(38), the proof being similar for the Euler semi-explicit scheme (39)—(40). For sim-
plicity we shall also take = 1. With the notations previously defined, the balance equation
at timer"*1 for (10)—(12) on any celk € .7 reads:

E / u(x, "y dx = / (6Vulx, ") . ng ds + / f(w(x, 1) dx,
dr Jx 3KNQ K

E/ v(x, " dy = f g(w(x, ")) dx
dr K K
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together with definition (43) this leads to

n+1

u —u" 1
%‘F ={Azu'y }K+m Z Flx + f(wi) + Rg"  (46)
ecdK*
Un+l - 5 5
KA—IK + TK’n = g(w’}g) + RK’n, (47)
where

e F, stands for the consistence error on the numerical approximation of thﬁ ke -
Nk . on the edge € 6K*:

/ o(X)Vu(x, try1) - Nk ds = T — wt™) + F2 eme),

F fulfils the following conservativity property:
Ve=K|LeY* Fly=-F!, (48)

and sincex is assumed to have uniformly bounded second-order derivativ@sa®, T
it is controlled by the size of the mesh (46¢):

|F K| <Cy.sSiZ&T), (49)

whereC,, generically denotes a constant depending on the :
hereC lly denot tantd d thecd

o T} = (T, T,%”) stands for the consistence error on the time integration:
n+l wnK

Tn
At g

m(K)/ O, w(x, ty41) dx = ol §

which is of order one since,w is uniformly bounded o2 x (0, T
ITg | < Cy(Siz€T) + Ar). (50)

We shall considef; as a finite volume functiofi’- € L?(7) x L*(7).
e R} = (R}(’”, R%”) is the consistence error on the reaction term At (f, g):

&) / F(w(x, thy1)) dx = F(w"+1) + R%.

Sincew remains bounded (insidg) and f, g are locally Lipschitz, it is of order one

R |<Cy, g, 5SIZ&T). (51)
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Again we shall consider”, as a finite volume functio®” € L?() x L2(7). Now,
subtracting (39)—(40) to (46)—(47), the errd}- defined in (44) satisfies the following
equation:

Ln+l  1n

€K €K n L+l 1
K +Ty" ={Aze; "Ik + el Z F} gm(e)
ecdK*
+(fwl) — @) + RE",
eZ,n+1 o eZ,n ) )
%+TK’n=g(wlk)—g(@rk)+Rk", (52)

multiplying the first equation bym(l()e}{””rl and summing over all cellX € 7 leads

to, by making use of the inner product (20), of the disciéfesemi-norm (36) and of the
formula (35)

1 1n
a+1l  1n+l 1n 1,n+1,2
A7 er  Teplirtles lig
1n+1 1.n 1.n 1n+1 _
=(ey Ry —T7)+ (5~ f(wy) — f(Wy)),2
1 1
+ Z eK’"+ Z Fy gm(e). (53)
Ke7 ecoK*

First of all, since the restriction t& of f is Lipschitz continuous, there is a constant
(1,3; sm:_ch that]| f (w) — f (W) | L2 < Alle’s || 2. Then, by making use of the Schwartz
inequality,

L+l . Lntl
e fw) — f@) 2l <Al llaller 2,

with the Schwartz inequality again

1n+1 1, 1n+1 1,n+1 1, 1,
5 5 ol < NS el ol RE — T2

T T
1n+1
< RGNz + ITF N 12) lley "l 2.

<Cu,q. 102 (A+SIZ&T))

The conservativity (48) of . , reads as

1n+1 1n+1 1n+1
Z ey Z Fe"’Km(e) = Z Flgleg" " —er" " mle)

KeT ecOK* e=K|LeS™
1/2

1n+1 2 2
<lei Mg | Y IFPm@? /|,
eeS*

<CuSIZRT)Y e yrm(e)?/Te
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the conductivity tensor being uniformly elliptic @@, >, _ o m(e)? /1. < Com(RQ), where
m(£2) is the measure of the domagh Altogether with Eq. (53) these upper bounds lead to

1 1nv12 Lntl2 1 1n+1
Aftlleg” 172+ le" Il /1+A leZ" " l2lle Il 2
1,n+1 1,n+1
+ C(sizeT) + At)(lle; "l 2 + le T lua),
and using Young's inequalities for the three terms on right hand side writes

” 1n+l (1+AAZ)2

12, < T %112, + C(siz&T) + An)?At.

2
[

Using the same process on (52) gives the same upper boumdéﬁﬁl 72 and so, if

(n +1)Ar<T one has
”en+1”%2 \e*’T(IIe%IIiz + C(siz&T) + A1)?)

for some constant related withA, that ends the proof for Theorem 13
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