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Abstract

Themonodomain equationsmodel the propagation of the action potential in the human heart: a very
sharp pulse propagating at a high speed, whose computation requires fine unstructured 3D meshes. It
is a non-linear parabolic PDE of reaction-diffusion type, coupled to one or several ODE, withmultiple
time-scales.
Numerical difficulties, such as unstructured meshes and stability are addressed here through the

use of a finite volume method. Stability conditions are given for two time-stepping methods, and two
example sets of ODEs, convergence is proved and error estimates are computed.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Computer models of the electrical activity in the myocardium are increasingly popular:
the heart’s activity generates an electromagnetic field in the torso, and produces a surface
potential map whose measure is the well-known electrocardiogram (ECG). It gives a non-
invasive representation of the cardiac electrical function.
This paper focuses on the study of a 3D finite volume numerical method used to compute

the electrical activity of the myocardium on unstructured meshes, and specifically gives
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conditions on the time-step to ensure aL∞ stability property, for an explicit and a semi-
implicit time-stepping method. Consequently, convergence results are proved.
The electrical activity in the torso was first demonstrated to be directly connected to the

heart beat more than 100 years ago[26]. It was first suggested to be well represented by
a dipole. Afterward, more complex models based on dipole representation have also been
used among which the famous oblique dipole layer[7]. This is the top-down approach,
providing heuristic models.
Conversely, in the 50’s Hodgkin and Huxley[11] explained how the electrical activity of

some nerve cells can be modeled from a microscopic description of ionic currents through
the membrane. Due to the sophistication of experimental techniques, there are currently
many such models, see[12] for reviews.
Recent studies inelectrocardiologyassume theanisotropic cardiac tissue tobe represented

at a macroscopic level by the so-called “bidomain” model, despite the discrete structure of
the tissue. We refer to[8] for a mathematical derivation of the bidomain equations, and to
[9,12] for reviews on the bidomain equations. A simpler version called the “monodomain”
model isobtained,assuminganadditional conditionon theanisotropyof the tissue.Although
the “bidomain” is far more complex, both models are reaction-diffusion systems[24,4] of
the general form

�tw = Aw + F(w), (1)

whereAw=∇·(�(x)∇w) and�(x) is a positive symmetricmatrix, eventually with Ker� �=
{0}. Only the monodomain model is addressed here.
Any microscopic description of the cell membrane can be inserted into the monodomain

equations, providing a large variety of macroscopic models, ranging from 2 to about 100
equations. Although theapproachwould be the same for complex ones, this paper only treats
the case of two simplified two variablesmodels, namely thewell-knownFitzHugh–Nagumo
one[6] and the one fromAliev–Panfilov[18]. The latter is verywell suited to themyocardial
cell, and often used in practical computer models[17,21,22].
Computer models of the heart based on these equations (mono or bidomain, two or more

ionic currents) currently are verypopular innumerical electrophysiology.Because theremay
be many different time scales in the reaction terms, the solutions exhibit sharp propagating
wave-fronts. For this reasons, only the recent improvement of computing capabilities allow
3D computations to be achieved. Moreover, until very recently, they were restricted to
differencesmethodsonstructuredgridsandsimplegeometries[17,19,13].A few researchers
recently started to study computations on 3D unstructured meshes, coupled to an explicit,
semi-implicit or fully-implicit time-stepping method[14,2]. The analysis of a Galerkin
semi-discrete space approximation was conducted by Sanfelici[20]. To our knowledge,
there has been no attempt at studying the effects of the time-steppingmethod on the stability
of the approximation. As amatter of fact the problem of stability in time of fully discretized
approximations is as difficult as the problem for global stability for the continuous solution
of reaction-diffusion systems.
Themain issueof this paper is to study the theoretical stability criterion for theexplicit and

semi-implicit Euler methods; and to derive error estimates for the approximate solutions.
Our idea is based on the proof of existence of global solutions to reaction-diffusion

systems as presented in[24]: solutions fort ∈ [0, T ) extend to anyt >0 due to the existence
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of strictly contracting regions� for the flowF(w). It is known[24] that such regions are
invariant sets for regular enough solutions of the system (1). Here, we prove in Theorems 7,
9 and 11 that under suitable assumptions on the time-step, the regions� are still invariants
sets for the discrete solution, proving as a consequenceL∞ bounds on the discrete solution.
The convergence is proved and error estimates established in Theorem 13.
Among the numerical methods suited to 3D computations on unstructured meshes, we

chooseafinite volumemethod introducedandanalyzed in[5],well suited to general unstruc-
tured meshes and especially to mesh refinement, needed here to capture sharp wave-fronts.
Moreover, it provides a sort of maximum principle, that may not be achieved for most finite
element formulations but is the key ingredient of our proof.
The next section details the mathematical model, and we recall some needed results of

existence and stability for solutions for reaction-diffusion systems, essentially based on
[24,4,10]. Section 3 briefly explains the finite volume technique for space discretization,
and Sections 4 and 5, respectively, are concerned with the stability and convergence results
and proofs.

2. The system of partial differential equations

2.1. The macroscopic monodomain model for cardiac electro-cardiology

At a microscopic scale, the surface membrane of the myocardial cells delimits an intra-
and an extra-cellular medium, both containing ionic species. The model accounts for the
dynamics of the trans-membrane ionic currentsIion and difference of potentialu, per surface
unit. The membrane is considered to have a capacitive behaviour, so that the total current
through the membrane is

C
du

dt
+ Iion = I , (2)

whereC is the capacitance per surface unit of the membrane. Furthermore, the cells are
self-organized into myofibres in order to form the complete myocardium.
At a macroscopic scale, due to a homogenization process[8], the trans-membrane po-

tentialu is defined on the whole heart� considered as the super-imposition of the intra-
and extra-cellular medium. From the microstructure of the muscle fibres is derived at each
point x ∈ � the positive definite tensor of conductivity�(x) = diag(cl, ct , ct ) in the local
orthonormal basis(l, n1, n2), wherel is a unit vector tangent to the fibre atx. With the
conductivity, the volumetric current can be expressed in terms ofu, and Eq. (2) becomes

�C
du

dt
+ �Iion = ∇ · (�∇u), (3)

where�?1 is the ratio of membrane surface per unit of volume.
The fibres are tangent to the boundary�� of the heart. As a result the normal direction

to the boundary at pointx ∈ �� is an eigen-direction for�(x) and the conductivity tensor
satisfies the following boundary condition:

∀x ∈ ��, �(x) · n(x)= �(x)n(x) (�(x)>0), (4)

wheren is the unit outward vector field on��.
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First modeled by Hodgkin and Huxley in[11], the ionic currentIion decomposes into the
contribution of several ionic channelsXi as following:

Iion = IX1 + IX2 + · · · + IXp . (5)

The states of the channels (open-closed) are described by gating variablesv= (v1, . . . , vp)
which are controlled by ODEs

dvi
dt

= �gi(u, vi), (6)

where the parameter�>1 means that the recovery variables have slow dynamics compared
to the potentialu. The ionic current through the channelXi depends onu andv,

IXi = −fi(u, v). (7)

Based on the original version,many suchmodels have been constructed[1] according to less
complex experimental studies of the cells membrane. Simplified versions of these models
have been proposed, the simplest of which is thewell-knownFitzHugh–Nagumoone[6,16].
It writes

Iion = −f (u, v) ≡ u(u− 1)(u− a)+ v, g(u, v)= ku− v, (8)

where 0<a<1 andk >0 are given parameters. It will be referred to as theFHN model.
For, it is adapted from the original model of Hodkin–Huxley[11], it suits the behaviour
of a nerve axon. For the myocardial cells, a simplified model was proposed by Aliev and
Panfilov[18] and has been widely used in 3D simulations of the human ventricles[17,21].
It writes

Iion = −f (u, v) ≡ ku(u− 1)(u− a)+ uv, g(u, v)= ku(1+ a − u)− v, (9)

wherek >0 and 0<a<1 are still given parameters. It will be referred to as theAP model.
For sake of simplicity, only the case of theAPandFHNmodels are addressed, although

the extension of our results to more complex ones shall be straightforward.
Eqs. (3), (5)–(7) rewrites in a dimensionless framework and for one gating variablev,

�ut = �2∇ · (�∇u)+ f (u, v), (10)

vt = g(u, v), (11)

where the functionsf, g : R2 �→ R are given by (8) for theFHNmodel and by (9) for the
APmodel.
The potentialu shall satisfy a Neumann boundary condition:

∀x ∈ ��, �(x)∇u · n(x)= 0, (12)

meaning that no current flows out of the heart. No additional boundary condition is needed
concerningv, since it is ruled point wise by an ODE. Of course, an initial data is provided:

∀x ∈ �, u(x,0)= u0(x), v(x,0)= v0(x). (13)
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2.2. Existence, uniqueness and regularity of solutions

General results for theCauchy problem (10)–(13) are recalled here. Such systems of PDE
have been widely studied[10,24,4]. Only basic non-exhaustive and non-optimal results are
recalled, that occur under reasonable assumptions expected from the physiological data.
Furthermore, a framework for the proof of existence of solutions for allt >0 is drawn, that
the numerical analysis will follow.

Theorem 1 (Local existence and uniqueness). The Eqs. (10)–(13)are considered on a
domain� ⊂ Rd (d = 1,2,3) with aC2 regular boundary��. The conductivity tensor�
is assumedC1 regular on�̄ and such that

∀x ∈ �̄, ∀� ∈ Rd , �T �(x)��0.

The function f and g are assumed locally Lipschitz. If the initial data satisfyu0 ∈ H 2(�),
u0 verifying the boundary condition(12);andv0 ∈ L∞(�), then the system(10)–(13)has
a unique solutionw(x, t)= (u(x, t), v(x, t)) on�×[0, T ) for someT >0, in the following
(weak) sense:

• the mappingt �→ w(t) ∈ L2(�)×L∞(�) is continuous on[0, T )withw(0)= (u0, v0),
• the mappingt �→ w(t) ∈ L2(�) × L∞(�) is Frechet differentiable on(0, T ) with
derivativet �→ dw/dt (t) ∈ L2(�)× L∞(�),

• for t ∈ (0, T ), we haveu(·, t) ∈ H 2(�), f (w(·, t)) ∈ L2(�) andg(w(·, t)) ∈ L∞(�),
• for t ∈ (0, T ), Eqs. (10), (11)and(12) respectively hold inL2(�),L∞(�) andL2(��).
• Moreover with the regularity assumed on the initial data, the mappingt �→ w(t) ∈
L∞(�)× L∞(�) is continuous on[0, T ).

At last, note thatT = +∞ if the reaction termsf , g are globally Lipschitz onR2.

Lemma 2 (Regularity). With the additional assumptions,

• the derivatives of� are �-Hölder continuous on�, for some�>0 (i.e. � ∈ C1+�(�)),
• � is uniformly elliptic on�,

∃	>0, ∀x ∈ �̄, ∀� ∈ Rd , �T �(x)��	|�|2.

• the initial data is such thatv0 ∈ C�(�) for some�>0,

the solutionw(x, t) is continuously differentiable in the variablet on �̄ × (0, T ) and
u(·, t) ∈ C2(�̄) for t ∈ (0, T ). So, (10)–(13)hold in a classical(strong) sense.

2.3. Stability of solutions and invariant regions

The solutions of Theorem 1 exists only for 0< t <T , whereT depends both on the initial
data and onf andg. But of course, only existence for all timet >0 makes sense in the
physiological phenomena. For our solution to be relevant with the physiological framework
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Fig. 1. Invariant regions� for FHN (left) andAP (right) models.

it is moreover needed to have uniformL∞ bounds onu andv. This is the main difficulty,
referred to asstability. It can be studied in two ways.
First, assuming a polynomial growth at infinity forf andg, Sobolev embeddings[15]

are used to uniformly boundu and v in Sobolev spaces and then find solutions for all
time t�0, see[10,25]. Such techniques can be applied to solutions with weaker reg-
ularity as in Lemma 2. HoweverL∞ bounds usually are unreachable although
physiologically relevant.
The second way to study the stability is to constructinvariant regionsas developed

in [24,4]. An invariant regionfor the Cauchy problem (10)–(13) is a closed subset� ⊂
R2 such that a solution of (10)–(13) having its initial data inside�’s interior remains
inside �. Such a solution is uniformly bounded inL∞ and moreover, since the
restriction of f and g to � are Lipschitz continuous, it has an infinite lifetime
T = +∞.
The second method is detailed here because it provides uniformL∞ bounds and is really

perfectly suited to the numerical analysis below. It requires

• a good behaviour of the non-linear termsf andg, so that invariant sets exist, seeFig. 1,
• a strong maximum principle for the operatoru �→ ∇ · (�∇u),
• regular solutions in order to apply the maximum principle.

Invariant regions for (10)–(13) are built by considering invariant regions ofR2 for the
reactive flow(u, v) ∈ R2 �→ (f (u, v), g(u, v)) ∈ R2. For the heat equation�t u=∇(�∇u),
intervals[u−, u+] are invariant regions. As a consequence, invariant sets� are searched in
the following form:

� = {(u, v) ∈ R2, u−�u�u+, v−�v�v+} = [u−, u+] × [v−, v+]. (14)
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Definition 3 (Rectangular invariant set). The rectangular subset ofR2,� = [u−, u+] ×
[v−, v+] is an invariant set forf andg if

∀(u, v) ∈ �,

∣∣∣∣∣∣∣
u= u−, v−�v�v+ ⇒ f (u, v)>0,
u= u+, v−�v�v+ ⇒ f (u, v)<0,
v = v−, u−�u�u+ ⇒ g(u, v)>0,
v = v+, u−�u�u+ ⇒ g(u, v)<0.

For an invariant rectangular region� (Definition 3) to be invariant for (10)–(13), astrong
point wise maximum principle is needed here. Remark that a simplification occurs in the
scalar case (with one equation) where a Stampacchia-troncature technique can be used
(see[3]).

Lemma 4 (Strong maximum principle). Let � be an open bounded subset ofRd whose
boundary�� hasC2 regularity. Let u ∈ C2(�̄) satisfy the boundary condition(12) for a
tensor� ∈ C1(�̄) satisfying the boundary condition(4).

If u has a maximum(resp. minimum) for x ∈ �̄ then∇ · (�∇u)(x)�0 (resp. ∇ ·
(�∇u)(x)�0).

With Lemma4 invariant regions according toDefinition 3 are invariant regions for regular
solutions of the PDE.

Theorem 5 (Invariant set for the PDE). Consider the system of Eqs. (10)–(13)with the
assumptions of Lemma2. Moreover, assume that the conductivity tensor� verifies the
boundary condition(4).
If � is a rectangular invariant set forf andg, according to Definition3, then it is an

invariant region for(10)–(12):

∀x ∈ �̄, w0(x) ∈ int(�)⇒ ∀t >0, ∀x ∈ �̄, w(x, t) ∈ �.

and thus such a solutionw has an infinite lifetimeT = +∞.

Remark 6. For � = �Id, a proof has been given by Smoller in[24] when assuming that
the boundary values of the solution(u, v)|��, which are unknown here, remains inside�;
and by Shcherbakov in[23] for a homogeneous Neumann boundary condition in the case
of the FHN model (8). Lemma 4 and Theorem 5 extend these results to the general case
(10)–(12) for an anisotropic conductivity tensor satisfying (4).

Examples of invariant regions for theFHN orAPmodels (8), (9) are displayed inFig. 1.
Note that these invariant regions may be built as big as wishes, so that any regular solution
of (10)–(12) remains uniformly bounded for all timet�0.

Proof (Lemma 4). At an interior pointx ∈ � it is obvious. Assume thatu has a maximum
forx ∈ ��.With condition (4) onecanconstruct anorthonormal basisB=(�1, . . . , �d)such
that�(x)=diag(�1, . . . , �d) inB (with �i�0,i=1, . . . , d) and such that�1 is normal to��
atx. Condition (12) together with (4) gives��1

u(x)=0. The family(�2, . . . , �d) generates

the tangent hyper-surface of�� at pointx. Sinceu isC2(��) and its restriction to�� also
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has a local maximum atx, we have��i
u(x)=0 for i=2, . . . , d. Consequently,u ∈ C2(�̄)

has a maximum inx implies that�2�i u(x)�0 (i = 1, . . . , d). Now since� ∈ C1(�̄) one

has∇ · (�∇u)(x)= �1�2�1u(x)+ · · · + �d�2�d u(x)�0. �

Proof (Theorem 5). With the assumptions of Lemma 2, letw = (u, v) be a solution of
(10)–(12) with initial valuew(0, ·) such thatw(0, x) ∈ int(�) for all x ∈ �̄. We recall that
u isC2(�̄) with respect tox and thatw isC1 with respect tot on �̄ × (0, T ).
Imagine thatw(x, t) reaches the boundary�� of � at timet0 and thatw(x, t) ∈ � for all

t� t0. Sincew(t) : [0, T ) �→ L∞(�) × L∞(�) is continuous,t0>0. Letx0 ∈ �̄ be such
thatw(x0, t0) ∈ ��.
We first assume thatw(x0, t0) is on the right side of�� : u(x0, t0) = u+ andv−�

v(x0, t0)�v+. On one hand, Definition 3 implies thatf (w(x0, t0))<0; and on the other
handu(·, t0) satisfies the conditions of Lemma 4 andu(x0, t0) = max�̄ u(·, t0). As a con-
sequence,∇ · (�∇u)(x0, t0)�0. It proves that�t u(x0, t0)<0. The function�t u being con-
tinuous on�̄ × (0, T ), there exists a neighbourhoodU of (x0, t0) in �̄ × (t0, T ) such that
�t u<0 onU , and thereforeu(x, t)<max�̄ u(·, t0)= u+ onU . Now imagine thatw(x, t)
is on the top side of� : v(x0, t0)= v+ andu−�u(x0, t0)�u+, then sinceg <0 on that top
side,�t v(x0, t0)<0 too and so there exists a neighbourhoodU of (x0, t0) in �̄ × (t0, T )
such thatv(x, t)< v+ onU .
Altogetherw cannot get out of� even at a corner point where the two precedent reasons

both hold.
To end,w remaining uniformly bounded, the reaction termsf andg can be considered

as uniformly Lipschitz continuous and with the last remark of Theorem 1,w has an infinite
lifetime T = +∞. �

3. The finite volume approximation

3.1. Meshes, spaces and notations

We shall approximate the solutions of system (10)–(12) with a finite volume method
according to the framework of[5], on admissible meshes adapted to the conductivity tensor
�. An admissible mesh of� (a bounded open subset ofRd whose boundary is piecewise
C1) adapted to� is given by
(1) a setT of polygonal connected open subsets of�, calledcellsand denoted byK,

such that

�̄ =
⋃
K∈T

K̄, ∀K,L ∈ T, K �= L⇒ K ∩ L= ∅.

In the followingm(K) will stand for the measure of a cellK ∈ T. For a cellK ∈ T lying
on the boundary, the edgēK ∩ �� might be aC1 curve, allowing non-polygonal domains
�. Two distinct cellsK andL ∈ T are called neighbour cells if̄K ∩ L̄ has a non-zero
(d − 1)-dimensional measure (i.e. non-zero surface ifd = 3 or non-zero length ifd = 2).
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On each cellK ∈ T a (positive definite) conductivity tensor�K ∈ Md×d is defined by

∀K ∈ T, �K = 1

m(K)

∫
�(x)dx. (15)

(2) A setS of interfaces, denoted bye that are of two types:

• either there exists two neighbour cellsK,L ∈ T such thate = K̄ ∩ L̄, e is an internal
interface and we sete =K|L;

• or there exists one cellK ∈ T such thatK̄ ∩ �� has a non-zero(d − 1)-dimensional
measure and such thate = K̄ ∩ ��, e is an external interface.

The set of internal interfaces is denoted byS# and the set of external interfaces by
S, and
soS=S# ∪ 
S. The(d − 1)-dimensional measure fore ∈ S ism(e) and it is non-zero.
For e ∈ S andK ∈ T such thate ⊂ �K we denote bynK,e the unit vector normal toe
and pointing outward ofK.
(3) Two sets of pointsX = (xK)K∈T,Y = (ye)e∈X, called cells and interfaces centres

and such thatxK ∈ K, ye ∈ e. We, furthermore, assume that for each cellK ∈ T and each
interfacee ∈ S such thate ⊂ �K,

ye − xK is co-linear to�KnK,e. (16)

Wedenote bydK,e the euclideandistance|ye−xK |andby�K,e the (positive) proportionality
coefficient between�KnK,e and the unit vector(ye − xK)/dK,e:

�KnK,e = �K,e
ye − xK
dK,e

and �K,e >0. (17)

Additionally, the boundary�K of any cellK ∈ T can be spitted into internal and external
interfaces, and we denote by
K, 
K#, the subsets ofS such that⋃

e∈
K

e = �K,
⋃
e∈
K#

e = �K ∩ �.

We also define the size of the mesh as the maximum of the cells’ diameters,

size(T)= max
K∈T

diam(K). (18)

As a consequence, amesh is described by the collection(T,S,X,Y), but will be referred
to asT.
Examples of such meshes are given in[5]. In the isotropic case they are 2D meshes

of triangles or 3D meshes of tetrahedra in which the centresxK are the centres of the
circumscribed circles or spheres of the cellsK, and more generally Voronoı¨ meshes.
On an admissible meshT, the finite volume approximation for the solution of (10)–(11)

is a couple of functionswT = (uT, vT) piecewise constant on the cellsK ∈ T.
As a consequence, we define

L2(T)=
{
uT =

∑
K∈T

uK�K, (uK)K∈T ∈ RNT

}
⊂ L2(�), (19)
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whereNT is the cardinal ofT, and�K(x) = 1 for x in K and 0 elsewhere. The space
L2(T) is naturally handled with the inner product induced byL2(�) and the associated
norm

(uT, vT)L2 =
∑
K∈T

uKvKm(K), ‖uT‖2
L2

=
∑
K∈T

|uK |2m(K). (20)

This euclidean structure is extended toL2(T) × L2(T). Forw = (u, v) andŵ = (û, v̂)
we have

(w, ŵ)L2 = (u, û)L2 + (v, v̂)L2, ‖w‖2
L2

= ‖u‖2
L2

+ ‖v‖2
L2
. (21)

3.2. Space discretization

In order to construct the finite volume approximation of system (10)–(11), the balance
equation is written on any cellK as

�
d

dt

∫
K

udx = �2
∫
�K

�∇u · nK ds +
∫
K

f (u, v)dx, (22)

d

dt

∫
K

v dx =
∫
K

g(u, v)dx. (23)

Suppose that eachvalueuK ,vK of thediscrete solutionapproximates themeanvalueonK of
the exact solution(u, v), then the discrete solution shall satisfy the following semi-discrete
equation

�
duK
dt
(t)= �2

m(K)

∑
e∈
K

�K,e(uT)m(e)+ fK(uT, vT), (24)

dvK
dt
(t)= gK(uT, vT). (25)

The termsfK(uT, vT) andgK(uT, vT) shall approximate 1/m(K)
∫
K
f (u, v)dx and

1/m(K)
∫
K
g(u, v)dx and are taken as follows:

fK(uT, vT)= f (uK, vK), gK(uT, vT)= g(uK, vK). (26)

The term�K,e(uT) approximates the mean flux alonge ∈ S outward ofK, specifically
1/m(e)

∫
e
(�∇u) · nK ds. On the external interfaces the boundary condition (12) onu is

taken into account by fixing�K,e = 0. On the internal interfaces we approximate the flux
as follows:

1

m(e)

∫
e

(�∇u) · nK ds � ∇u(ye) · (�KnK,e)= �K,e∇u(ye) · ye − xK
dK,e

.

An approximation of the derivative∇u(ye) · (ye − xK)/dK,e of u at pointye is established
by adding auxiliary unknowns(ue)e∈S at each point(ye)e∈S

∇u(ye) · ye − xK
dK,e

� ue − uK
dK,e

.
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An additional requirement is that the numerical fluxes satisfy the conservativity property,

∀e =K|L ∈ S#, �K,e = −�L,e. (27)

This property enables us to determine the additional unknownsue and to compute the
numerical fluxes on the internal interfaces

∀e =K|L ∈ S#, �K,e = 
e(uL − uK), (28)

where


e = �K,e�L,e
�K,edL,e + �L,edK,e

m(e)>0. (29)

The resulting approximation of the fluxes is consistent, as shown in[5].
Consequently, the semi-discrete finite volume formulation is

�
duK
dt

(t)= �2

m(K)

∑
e=K|L∈
K#


e(uL − uK)+ f (uK, vK), (30)

dvK
dt

(t)= g(uK, vK). (31)

We recall that in (30)–(31) the boundary condition (12) is taken into account by fixing
�K,e = 0 on the external interfaces.
The most natural initial data is given for allK ∈ T by wK(0) = w0(xK), orwK(0) =

1/m(K)
∫
K
w0(x)dx.

The discrete operatorAT defined onL2(T) by

AT : uT ∈ L2(T) �→ zT ∈ L2(T), zK = 1

m(K)

∑
e=K|L∈
K∗


e(uL − uK)

(32)

approximates the continuous elliptic operatoru �→ ∇ · (�∇u).
At last, the semi-discrete system of ODEs simply writes

�
duT
dt
(t)= �2ATuT + f (uT, vT), (33)

dvT
dt
(t)= g(uT, vT). (34)

The operatorAT is symmetric onL2(T) and verifies

(ATuT, uT)L2(�) = −
∑

e=K|L∈S#


e|uL − uK |2. (35)

ThereforeAT is non-negative and its kernel is the subspace of the constant functions on
�, and define the following semi-norm onL2(T),

|uT|21,T = −(ATuT, uT)L2 =
∑

e=K|L∈S#


e|uL − uK |2. (36)
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With this semi-norm the space of the finite volume functions will be referred to asH 1(T).
Unlike in the case of a finite element Galerkin formulation, the spaceH 1(T) is not a
subspace ofH 1(�) but only a discrete equivalent.

3.3. Time-stepping methods

Given an admissible finite volume mesh as defined in Section 3.1, we choose a time-step
�t >0 and consider the forward Euler method (37)–(38) and the backward Euler method
(39)–(40).

�
un+1T − unT

�t
= �2ATu

n
T + f (unT, vnT), (37)

vn+1T − vnT
�t

= g(unT, vnT), (38)

�
un+1T − unT

�t
= �2ATu

n+1
T + f (unT, vnT), (39)

vn+1T − vnT
�t

= g(unT, vnT). (40)

4. Stability analysis

As explained in Section 2.3, any regular solution initially in a contracting rectangle�
(Definition 3) exists for all timet�0 and remains trapped in�. We shall prove in this
section that

(1) the semi-discrete solutions of the ODEs (33)–(34) initially in� exist for all t >0 and
remain trapped in� as well,without any additional regularity assumption on the mesh;

(2) the discrete solutions given by (37)–(38) or (39)–(40) initially in� are well-defined for
all n�0 and remain trapped in� as well, under classical conditions on the time-step
�t .

Item (1) justifies the choice of a finite volumemethod, and proves that numerical instability
are only caused by the time-stepping method. The�t conditions in item (2) splits into
constraints due to the discrete elliptic operatorAT and the non-linear source termsfK , gK .
The balance between these constraints is ruled by the ratio of the mesh sizesize(T) to

the time-scale factor�, showing up the main question of the discretization: how should the
mesh and the time-step be chosen with respect to the value of� and the desired accuracy?
We recall that invariant regions can be built as big as one wishes (seeFig. 1) so that

any solution of (10)–(12) associated with a bounded initial data can be approximated with
numerical stability.



ARTICLE IN PRESS
Y. Coudière, C. Pierre / Nonlinear Analysis:Real World Applications( ) – 13

4.1. Stability for the semi-discrete problem

Given any initial dataw0
T ∈ L2(T) × L2(T), the system of ODEs (33)–(34) has a

unique solutionw ∈ C1([0, T );L2(T) × L2(T)), for someT >0, becausef andg are
locally Lipschitz onR2.

Theorem 7. Let� ⊂ R2bea rectangular invariant set(Definition3).Then� is an invariant
region for the semi-discrete system(33)–(34):

∀K ∈ T, w0
K ∈ � ⇒ ∀t >0, ∀K ∈ T, wK(t) ∈ �

andw has an infinite lifetimeT = +∞.

Theproof of the theorem is supportedby the following lemmawhich is adiscreteanalogue
of Lemma 4.

Lemma 8. LetT be an admissible finite volume mesh of� adapted to the conductivity
tensor� andAT be the operator defined by(32).
If uT has a maximum(resp. minimum) for K ∈ T then {ATuT}K�0 (resp.

{ATuT}K�0).

Proof (Lemma 8). If uT ∈ L2(T) has a maximum forK ∈ T then for any cell
L ∈ T neighbouringK one hasuK�uL. As a resultuL − uK is non-positive and so
{ATuT}K�0. �

Proof (Theorem 7). Let � be an invariant rectangle andw0 ∈ L2(T) × L2(T) satisfy
w0
K ∈ � for allK ∈ T. ConsiderT >0 and the solutionw ∈ C1([0, T ];L2(T)×L2(T))

of (33)–(34) with initial dataw0
T.

Assume now thatw reaches�� at timet0�0 and thatwK(t) ∈ � for all K ∈ T and all
t ∈ [0, t0]. LetK ∈ T be such thatwK(t0) ∈ ��.
First assume thatwK(t0) is on the right side of��: uK(t0)= u+ andv−�vK(t0)�v+.

Then, on the one hand Definition 3 impliesf (wK(t0))<0, and on the other hand
maxL∈T uL(t0)= u+ = uK(t0) so that property{ATuT(t0)}K�0 (Lemma 8). As a result
we have duK/dt (t0)<0 and souK(t)<u+ for t ∈ (t0, t0 + 
) for some
>0.
Now if wK(t0) is on the top side of�, vK(t0) = v+ andu−�uK(t0)�u+, sinceg <0

on that top side then�t vK(t0)<0 and sovK(t)< v+ for t ∈ (t0, t0 + 
).
Altogether,w cannot get out of�, even at a corner point where the two precedent reasons

hold.
To end, sincew remain uniformly bounded it has an infinite lifetimeT = +∞. �

4.2. Stability for the semi-implicit Euler method

We recall that the operatorAT is non-positive, so that Id− ��tAT is symmetric and
positive-definite for any�t >0. As a consequence, given(unT, v

n
T), Eq. (39) has a unique

solution; and for anywnT, Eqs. (39)–(40) define a unique sequence(wnT)n∈N in L2(T)×
L2(T).
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The following lemma gives a condition on�t for wnT to remain in� if w0
T ∈ �.

Theorem 9. Let� be a rectangular invariant set(Definition3). If the time-step�t verifies

�t
�

∣∣∣∣min�
�uf

∣∣∣∣ �1, �t

∣∣∣∣min�
�vg

∣∣∣∣ �1, (41)

then� is an invariant region for the solution(wnT)n∈N of (39)–(40):

∀K ∈ T, w0
K ∈ � ⇒ ∀n ∈ N, ∀K ∈ T, wnK ∈ �.

Remark 10. Condition (41) can be specified withF(u)= −u(u− a)(u− 1):

• for the FHN model (8), we have∣∣∣∣min�
�uf

∣∣∣∣ =max(|F ′(u−)|, |F ′(u+)|),
∣∣∣∣min�

�vg

∣∣∣∣ = 1,

• for the AP model (9), we have∣∣∣∣min�
�uf

∣∣∣∣ =max(|F ′(u−)− v+|, |F ′(u+)− v+),
∣∣∣∣min�

�vg

∣∣∣∣ = 1.

This yields explicit computations of the time-step in applied cases.

Proof (Lemma 9). Eqs. (39)–(40) can be rewritten as

(Id − ��tAT)u
n+1
T = unT + �tf (wnT)/�, vn+1T = vnT + �tg(wnT),

for all n ∈ N, which has a unique solution (see above).
Let us consider the following function defined onR2:

�(w)= (�1(w),�2(w))= (u+ �tf (w)/�, v + �tg(w)).

Under condition (41) one has�u�1�0 and so sup� �1 = �1(u+, v)= u+ + �tf (u+, v)/�
for somev, v−�v�v+. But Definition 3 ensures thatf (u+, v)<0 and then sup� �1�u+.
Similarly, inf� �1�u− andv−� inf� �2�sup� �2�v+. As a consequence,�(�) ⊂ �.
Now letw0

T ∈ L2(T)×L2(T) satisfyw0
K ∈ � for allK ∈ T. Since�(�) ⊂ �wehave

({(Id − ��tAT)u
1
T}K, v1K) ∈ � for all K ∈ T. If K ∈ T is such thatu1K =maxL∈T u1L,

then {ATu
1
T}K�0 (this is Lemma 8) and then{(Id − ��tAT)u

1
T}K�u+ implies that

u1K =maxL∈T u1L�u+. Similarly, infL∈T u1L�u− and sow1
K ∈ � for all K ∈ T. �

4.3. Stability for the explicit Euler method

Given anyw0
T ∈ L2(T) × L2(T), the discrete system (37)–(38) defines explicitly a

unique sequence(wnT)n∈N in L2(T)× L2(T).
The following lemma gives a condition on�t for wnT to remain in� if w0

T ∈ �.
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Theorem 11. Let� be a rectangular invariant set(Definition3). If the time-step�t verifies

∀K ∈ T, �t
�

m(K)

∑
e∈
K#


e + �t
�

∣∣∣∣inf� �uf

∣∣∣∣ �1, �t

∣∣∣∣min�
�vg

∣∣∣∣ �1, (42)

then� is an invariant region for the solution(wnT)n∈N of (37)–(38):

∀K ∈ T, w0
K ∈ � ⇒ ∀n ∈ N, ∀K ∈ T, wnK ∈ �.

Remark 12. There is a classical condition of regularity for a family of admissible meshes
that is there exist uniform constants	,�>0 such that

∀e =K|L ∈ S#, 	�x�dK,e + dL,e, ∀K ∈ T, �xm(�K)��m(K),

where�x is the size of the meshT. For such a family of admissible meshes, and in the
isotropic case∇ · (�∇u)=D�(u), the first stability condition (42) becomes

�D
�t
�x2

�
	

+ �t
�

∣∣∣∣inf� �uf

∣∣∣∣ �1.

This condition combines the classical stability conditions for both the heat equationu′ =
D�(u) and the ordinary differential equationu′ = f (u).

Proof (Lemma 11). Eqs. (37)–(38) can be rewritten as

un+1T = (Id + ��tAT)u
n
T + �t

�
f (wnT),

vn+1T = vnT + �tg(wnT).

Letw0
T ∈ L2(T)× L2(T) satisfyw0

K ∈ � for all K ∈ T. For anyK ∈ T,

�−(w0
K)�u1K��+(w0

K),

where the two functions�− and�+ are defined by

�−(w)= u+ ��t
m(K)

∑
e∈
K#


e(u− − u)+ �t
�
f (w),

�+(w)= u+ ��t
m(K)

∑
e∈
K#


e(u+ − u)+ �t
�
f (w).

The stability condition (42) implies that�u�
−�0 and�u�

+�0 on�, and then,

u− + �tf (u−, v0K)�u1K�u+ + �tf (u+, v0K).

At last,� being an invariant rectangle (Definition 3),f (u−, v0K)>0 andf (u+, v0K)<0.
As a consequence,u−�u1K�u+. Similarly we havev−�v1K�v+ and at last,w1

K ∈ � for
all K ∈ T. �
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5. Convergence analysis

Convergence of the finite volume approximations and error estimates are proved in this
section.
The functionsf , g are supposed to be those of theFHN orAPmodel, and the other data

�, �, w0 = (u0, v0) are supposed to fulfil the assumptions of Lemma 2 and Theorem 5,
in order for the solutionw(t) to exists for allt >0 in a fixed rectangle�, depending only
onw0.
In this case, the solutionw(x, t) isC2(�̄)with respect tox andC1([0,+∞))with respect

to t .
Given an admissible finite volumemesh as defined in Section 3.1, and�t >0, we denote

by (w̄nT)n∈N the sequence defined by (39)–(40) or (37)–(38) andw̄0
K = w0(xK) for all

K ∈ T.
Under the condition (41) or (42), bothw andw̄nT remain in�.
In order to compare the discrete and the continuous solutions we introduce the sequence

(wnT)n∈N in L2(T)× L2(T) defined by
wnK = w(xK, tn)= (u(xK, tn), v(xK, tn)). (43)

The error(enT)n∈N writes

enT = wnT − w̄nT ∈ L2(T)× L2(T). (44)

Theorem 13(Convergence and error estimate). Suppose that the data fulfil the assump-
tions of Lemma2andTheorem5.Assume furthermore that� ⊂ R2 is an invariant rectangle
(Definition3) for f andg such that the initial dataw0 is in�’s interior.
We additionally assume that�tw and the second-order derivatives in space�2�i u ofu are

uniformly bounded on̄� × (0, T ].
LetwnT be the approximation of was defined by(37)–(38) (or in (39)–(40))with the initial

data

∀K ∈ T, w̄0
K = w0(xK)= (u0(xK), v0(xK)). (45)

If the stability condition(41) (or (42))relative to� is satisfied, then thereexists twoconstants
C and�, only depending on the data(�,w0, f , g and�) such that forn�t�T the error is

‖enT‖L2 �Ce�T (size(T)+ �t).

Proof (Theorem 13). We shall prove Theorem 13 for the Euler semi-implicit scheme
(37)–(38), the proof being similar for the Euler semi-explicit scheme (39)–(40). For sim-
plicity we shall also take�= 1. With the notations previously defined, the balance equation
at timetn+1 for (10)–(12) on any cellK ∈ T reads:

d

dt

∫
K

u(x, tn+1)dx =
∫
�K∩�

(�∇u(x, tn+1)) · nK ds +
∫
K

f (w(x, tn+1))dx,

d

dt

∫
K

v(x, tn+1)dx =
∫
K

g(w(x, tn+1))dx
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together with definition (43) this leads to

un+1K − unK
�t

+ T 1,n
K = {ATu

n+1
T }K + 1

m(K)

∑
e∈
K#

Fne,K + f (wnK)+ R1,n
K (46)

vn+1K − vnK
�t

+ T 2,n
K = g(wnK)+ R2,n

K , (47)

where

• Fne,K stands for the consistence error on the numerical approximation of the flux
∫
e
�∇u ·

nK,e on the edgee ∈ 
K#:∫
e

�(x)∇u(x, tn+1) · nK ds = 
e(u
n+1
L − un+1K )+ Fne,Km(e),

FneK fulfils the following conservativity property:

∀e =K|L ∈ S#, F ne,K = −Fne,L, (48)

and sinceu is assumed to have uniformly bounded second-order derivatives on�̄×(0, T ]
it is controlled by the size of the mesh (see[5]):

|Fne,K |�Cw,�size(T), (49)

(whereC	 generically denotes a constant depending on the data	 only).
• T nK = (T 1,n

K , T
2,n
K ) stands for the consistence error on the time integration:

1

m(K)

∫
K

�tw(x, tn+1)dx = wn+1K − wnK
�t

+ T nK

which is of order one since�tw is uniformly bounded on̄� × (0, T ]:

|T nK |�Cw(size(T)+ �t). (50)

We shall considerT nT as a finite volume functionT nT ∈ L2(T)× L2(T).
• RnK = (R1,n

K , R
2,n
K ) is the consistence error on the reaction term, forF = (f, g):

1

m(K)

∫
K

F(w(x, tn+1))dx = F(wn+1K )+ RnK .

Sincew remains bounded (inside�) andf , g are locally Lipschitz, it is of order one

|RnK |�Cw,f,g,�size(T). (51)
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Again we shall considerRnT as a finite volume functionRnT ∈ L2(T) × L2(T). Now,
subtracting (39)–(40) to (46)–(47), the errorenT defined in (44) satisfies the following
equation:

e
1,n+1
K − e1,nK

�t
+ T 1,n

K = {ATe
1,n+1
T }K + 1

m(K)

∑
e∈
K#

Fne,Km(e)

+ (f (wnK)− f (w̄nK))+ R1,n
K ,

e
2,n+1
K − e2,nK

�t
+ T 2,n

K = g(wnK)− g(w̄nK)+ R2,n
K , (52)

multiplying the first equation bym(K)e1,n+1K and summing over all cellsK ∈ T leads
to, by making use of the inner product (20), of the discreteH 1 semi-norm (36) and of the
formula (35)

1

�t
(e
1,n+1
T , e

1,n+1
T − e1,nT )L2 + |e1,n+1T |21,T

= (e1,n+1T , R
1,n
T − T 1,n

T )+ (e1,n+1T , f (wnT)− f (w̄nT))L2
+

∑
K∈T

e
1,n+1
K

∑
e∈
K#

Fne,Km(e). (53)

First of all, since the restriction to� of f is Lipschitz continuous, there is a constant
�f,� such that:‖f (wnT)− f (w̄nT)‖L2 ��‖enT‖L2. Then, by making use of the Schwartz
inequality,

|(e1,n+1T , f (wnT)− f (w̄nT))L2|��‖enT‖L2‖e1,n+1T ‖L2,

with the Schwartz inequality again

|(e1,n+1T , e
1,n
T )L2|�‖e1,n+1T ‖L2‖enT‖L2|(e1,n+1T , R

1,n
T − T 1,n

T )|
� (‖RnT‖L2 + ‖T nT‖L2)︸ ︷︷ ︸

�Cw,�,f,g,�(�t+size(T))

‖e1,n+1T ‖L2.

The conservativity (48) ofFnK,e reads as∣∣∣∣∣∣
∑
K∈T

e
1,n+1
K

∑
e∈
K#

Fne,Km(e)

∣∣∣∣∣∣ =
∣∣∣∣∣∣

∑
e=K|L∈S#

F ne,K(e
1,n+1
K − e1,n+1L )m(e)

∣∣∣∣∣∣
� |e1,n+1T |1,T


 ∑
e∈S#

|Fne |2m(e)2/
e

1/2

︸ ︷︷ ︸
�Cwsize(T)

∑
e∈S#m(e)2/
e

,
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the conductivity tensor being uniformly elliptic on�,
∑
e∈S# m(e)2/
e�C�m(�), where

m(�) is the measure of the domain�. Altogether with Eq. (53) these upper bounds lead to

1

�t
‖e1,n+1T ‖2

L2
+ |e1,n+1T |21,T�

(
� + 1

�t

)
‖e1,n+1T ‖L2‖enT‖L2

+ C(size(T)+ �t)(‖e1,n+1T ‖L2 + |e1,n+1T |1,T),
and using Young’s inequalities for the three terms on right hand side writes

‖e1,n+1T ‖2
L2

� (1+ ��t)2

1− �t
‖enT‖2

L2
+ C(size(T)+ �t)2�t .

Using the same process on (52) gives the same upper bound on‖e2,n+1T ‖2
L2

and so, if
(n+ 1)�t�T one has

‖en+1T ‖2
L2

�e�T (‖e0T‖2
L2

+ C(size(T)+ �t)2)

for some constant� related with�, that ends the proof for Theorem 13.�
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