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Abstract

A mixed formulation is proposed and analyzed mathematically for
coupled convection-diffusion in heterogeneous medias. Transfer in solid
parts driven by pure diffusion is coupled with convection/diffusion trans-
fer in fluid parts. This study is carried out for translationnaly invariant
geometries (general infinite cylinders) and unidirectional flows. This
formulation brings to the fore a new convection/diffusion operator, the
properties of which are mathematically studied : its symmetry is first
shown using a suitable scalar product. It is proved to be self-adjoint with
compact resolvent on a simple Hilbert space. Its spectrum is character-
ized as being composed of a double set of eigenvalues: one converging
towards−∞ and the other towards +∞, thus resulting in a non-sectorial
operator. The decomposition of the convection-diffusion problem into
a generalized eigenvalue problem permits the reduction of the original
three-dimensional problem into a two-dimensional one. Despite being
non sectorial, a complete solution on the infinite cylinder, associated
to a step change of the wall temperature at the origin, is exhibited
with the help of the operator’s two sets of eigenvalues/eigenfunctions.
On the computational point of view, a mixed variational formulation is
naturally associated to the eigenvalue problem. Numerical illustrations
are provided for axi-symmetrical situations, the convergence of which is
found to be consistent with the numerical discretization.
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Introduction

Convection-diffusion problems are of importance in many fields of applications
in thermal, chemical or biomedical engineering sciences. More specifically,
heat or mass diffusion coupled with unidirectional convection is present in
many types of equipments such as heat pipes, heat exchangers (shell, tube
or plate), chromatographs and reactors and mass exchangers in micro-channel
artificial devices, and occurs in real biological tissues. This framework covers
both parallel or counter flow configurations.

A classical strategy for describing the temperature field T of tube like
configurations in the applied literature is generally to assume the following
separation of variables solution

T (x, y, z) =
∑

λ∈Λ

cλTλ(x, y)e
λz, (1)

where z is the longitudinal coordinate along which the flow is aligned and x, y
are transverse coordinates. The usual subsequent steps [7] are then to search
for the “eigenvalues/eigenfunctions” λ/Tλ and finally compute the amplitude
coefficients cλ.

For a clear understanding of these points, returning to the origin is instruc-
tive. Graetz and Nusselt [9, 17] studied a simplified version of the problem:
a fluid flowing in a single duct at high Peclet number Pe (which is the ratio
of convection to diffusion time scales), when longitudinal diffusion is negligi-
ble compared to radial diffusion. The duct is assumed to be either a circular
cylinder or made of two parallel infinite plates. Such a symmetric configura-
tion actually leads to simplified one-dimensional problems. The original Graetz
problem correspond to the case of cylindrical duct. The radial coordinate being
denoted r, it reads:

1

r
∂r (r∂rT ) = Pe v(r)∂zT,

with a Poiseuille parabolic velocity profile v(r). In this simplified framework,
searching for a separation of variable solution

T (r, z) = Tλ(r)e
λPe z,

1

r

d

dr

(

r
dTλ
dr

)

= λvTλ, (2)

which allows the definition of λ/Tλ as eigenvalues/eigenfunctions. Problem (2)
is, moreover, symmetric negative, self-adjoint with compact resolvent, justify-
ing decomposition (1) where Λ appears as a discrete subset of R−. Moreover,
the coefficients cλ can be easily computed using the simple scalar product
over variable r thanks to the axy-symmetry of the initial condition and the
boundary conditions

cλ =

∫

T0(r)Tλ(r)r dr,

where T0 is the inlet condition at z = 0.


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These results have historically justified (1) as an interesting heuristic. How-
ever, as soon as the Graetz-Nusselt framework is modified, none of the previous
steps can be performed in a simple way. Indeed, many studies have explored
possible extensions to that framework. Among these extensions, two are of
particular importance: the extended Graetz problem where the longitudinal
diffusion term is no longer neglected, and the conjugated Graetz problem in
which coupling with a solid wall where diffusion occurs is considered. The dif-
ficulties met by previous contributors when considering these two simple but
non-trivial extensions are listed bellow.

Looking for a separation of variable solution T (r, z) = Tλ(r)e
λz no longer

provides an eigenvalue problem. Precisely, in the case of the conjugated Graetz
problem, the new problem to be solved for Tλ reads
{

1
r
∂r (r∂rTλ) = λPe vTλ fluid part

1
r
∂r (r∂rTλ) = −λ2Tλ solid part

+ coupling condition on the fluid/solid interface,

where the quadratic term λ2 is accounting for the axial diffusion along z. In
such a form, one can see that this problem is not an eigenvalue problem on
the whole fluid+solid domain.

Adding axial diffusion now permits information back-flow in the z < 0
direction, not only along the flow with z > 0. Therefore both positive and
negative “eigenvalues” λ are physically expected: the previous symmetric-
negative structure of the Graetz problem is no longer relevant here. However,
until Papoutsakis work [18] detailed below, no attention had been paid to this
important point. Early papers on the extended/conjugated Graetz problem
[25, 1, 15, 5, 6, 13, 26, 27, 16] assumed a negative “spectrum” (that could,
at least in principle, be complex) and a complete set of “eigenfunctions” by
inserting a Graetz-problem-like series solution into the diffusion convection
equation.

Still in these early works, as pointed out by Michelsen et al. [16], the
difficulties of determining both the non-orthogonal “eigenfunctions” and the
expansion coefficients cλ appear critical. From a computational point of view
the strategy used by Hsu et al. [13, 26, 27] using the Gram-Schmidt re-
orthogonalization procedure has a high cost, especially when approaching the
entrance region where a large number of “eigenvalues” is necessary for a correct
representation of the solution.

The domain definition and inlet condition also raise new questions and
difficulties. In early papers, the flow domain is set as the positive real axis
and the assumption of uniform fluid temperature at the inlet has been widely
used. As pointed out in [18, 28], e.g., when axial diffusion is permitted, the
uniform inlet condition is invalid since the temperature would be altered by
upstream conduction before reaching the inlet location.

The most important progress in overcoming these difficulties has been made
by Papoutsakis and Ramakrishna in a series of innovative papers [19, 20, 18].
[18] proposes a new formulation of the extended Graetz problem, adding a sec-
ond unknown temperature flux, leading to a symmetric eigenvalue problem.
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This approach thus answers the problem regarding the spectrum location (real
eigenvalues only) and provides a adequate formulation for the amplitude co-
efficient cλ computation. This approach has been successfully used in a series
of recent papers by Weigand et al. [29, 32, 31, 30] and Chi-Dong Ho et al.
for various heat exchanger configurations, see e. g. [11, 12]. Hence, to our
knowledge, there is no complete theoretical foundation for decomposition (1).
This lack of theoretical framework, despite the commonly used terminology,
does not permit Λ and Tλ to be defined via an eigenvalue problem, all the more
so a symmetrical one. On the one hand, this is a fundamental problem for the
definition of Λ’s topology and location; though it is always assumed to be real
and discrete. On the other hand, this is a practical issue for the numerical
computation of Tλ and of the coefficients cλ for which no direct orthogonal
properties are available from a simple, scalar-product-based, definition.

In our opinion, three important issues are still pending concerning Papout-
sakis et al. framework:

1- it only covers symmetrical configurations such as circular ducts or rect-
angular channels,

2- the extension to the conjugated Graetz problem proposed in [19, 20]
remains heavy and complicated,

3- from a theoretical point of view, only a symmetry property has been
proved. This is not sufficient to justify neither the discrete structure
of the considered spectrum nor the finite order of the eigenfunctions.
For this, self-adjointness results as well as compactness properties are
necessary which haven’t been proved yet, weakening the legitimacy of
the proposed decomposition (1).

The aim of this paper is to address these issues in a very general tube
configuration (we assume no symmetry of the tube section) for any general
unidirectional velocity profile (for example allowing non-Newtonian velocity
profiles).

At this point, it is important to stress that the mathematical justification
of the previous approaches is not the main motivation of the present contri-
bution. The framework proposed here is opening new perspectives for the
computation of a large variety of configurations that have not been considered
previously. A major consequence of this work is to allow a complete descrip-
tion of the original three-dimensional problem by solving a two-dimensional
one only, whose numerical discretization is obviously much lighter. Moreover,
this two-dimensional problem to be solved can naturally be embedded into a
simple mixed variational formulation. This provides a wide class of standard
discretization using mixed finite-element methods, that can be implemented
with basic finite-element libraries.

The physical and geometrical frameworks are described in section 1. Sec-
tion 2 develops a theoretical investigation of Equation (1) decomposition for
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the temperature solution. Subsection 2.1 introduces a reformulation of the
problem which allows the search for a separation of variable solution and leads
to an eigenvalue problem. In subsection 2.2 the functional properties of the
eigenvalue problem operator are established. It is proved to be symmetric
and moreover self adjoint with a compact resolvent on a basic Hilbert space.
At the end of this theoretical section, these results are used in 2.3 to display
a full decomposition of a temperature field for which far field conditions are
substituted for an inappropriate inlet condition at z = 0. This decomposi-
tion appears efficient from a computational point of view since it only exhibits
the eigenvalues/eigenvectors of the problem as well as easily computable coeffi-
cients using simple scalar products. In section 3, it is shown that the eigenvalue
problem is naturally equivalent to a mixed variational problem, thus providing
a simple computational framework to solve the eigenvalue problem in terms of
mixed finite element methods. The remaining part of this section is devoted to
the analysis of the numerical convergence of the method. We restrict ourselves
to symmetric configurations where analytical solutions are available allowing
an a priori error estimate of the solution. In this last section we notably study
the previously discussed extended Graetz and conjugated Graetz problems.

1 Physical statement

1.1 Geometry, general assumptions and notations

The domain considered here is an infinite cylinder Z = Ω × R having a cross
section Ω ⊂ R

2 (assumptions on Ω are stated below). The coordinate system
relative to Ω will be denoted by (x, y) and the axial coordinate by z ∈ R.

x

y

z

Ω1

Ω2

Ω3

v1 = 0

v2

v3

n

n2,1

Figure 1: Domain cross-section Ω (left) and whole domain Z = Ω× R (right)

The domain cross-section Ω is assumed bounded and its boundary ∂Ω is
taken to be smooth (C1 regularity). Its outward normal is denoted by n.
Ω is divided into a collection of open sub-domains Ωi (1 ≤ i ≤ N) with
smooth boundaries, disjoint (Ωi ∩ Ωj = ∅ if i 6= j) and such that Ω = ∪iΩi.
The interface between Ωi and Ωj (if non-empty) is denoted by Γij = Ωi ∩
Ωj, and its unit normal, outward from Ωi towards Ωj, will be denoted by
nij. These assumptions ensure that the semi-norm

∫

Ω
|∇u|2 dx is a norm on

H1
0(Ω) equivalent to the H1 norm (Poincaré inequality) and also that H1

0(Ω)


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and H1(Ωi) have compact embedding into L2(Ω) and L2(Ωi) respectively (see
e..g [8, 3]).

The flow in the fluid part is assumed to be established and laminar, so that
the velocity v = v(x, y)ez is along the z direction and is a function of (x, y)
only. The velocity profile v is only assumed bounded: v ∈ L∞(Ω), though it is
physically continuous in all applications. Solid sub-domains Ωi are taken into
account by setting v|Ωi

= 0. v > 0 (resp. v < 0) on Ωi naturally means that
Ωi is a fluid sub-domain where the flow is in the z > 0 (resp. z < 0) direction.

The conductivity k is isotropic but heterogeneous. Precisely, k is a bounded,
positive and piecewise constant function constant on every Ωi:

0 < α ≤ k(x) ≤ β < +∞ a.e. in Ω , ki := k|Ωi
∈ R . (3)

Ti := T|Ωi
indicates the restriction of the function T to the sub-domain

Ωi. Conventionally here, the differential operators div, ∇ are considered on
R

2 only: divp = ∂xp1 + ∂yp2 and ∇f = (∂xf, ∂yf), for a vector field p and a
scalar function f respectively.

1.2 Energy equation

On the infinite cylinder Z = Ω× R. The dimensionless energy equation is

div(k∇T ) + k∂2zT = Pe v∂zT , (4)

where Pe is the dimensionless Péclet number. On the cylinder boundary ∂Z,
constant temperatures are imposed, with a step change at the entry z = 0

{

T|∂Z = 1 if z < 0

T|∂Z = 0 if z > 0
. (5)

Relevant limit conditions as z → ±∞ therefore are:

T (·, z) →
z→−∞

1 , T (·, z) →
z→+∞

0 . (6)

Coupling conditions at the sub-domain interfaces also are required, physically
standing for the continuity of the temperature (concentration) and of the nor-
mal heat (mass) flux, they read

Ti = Tj and ki∇Ti · nij = kj∇Tj · nij on Γij , (7)

whenever the interface Γij is non-empty, the dot product naturally standing
for the scalar product in R

2.





A new mixed-formulation for convection-diffusion problems

2 Mathematical analysis

2.1 Problem reformulation

Equation (4) is reformulated into a system of two first order differential equa-
tions

∂zT = Pe v k−1 T − k−1 div(p) (8)

∂zp = k∇T , (9)

where T still denotes the dimensionless temperature (or concentration), the
additional unknown p denotes a vector valued function on Ω.
Albeit mathematically correct, this formulation calls for some physical jus-
tification. Formulation (8)-(9) is derived from the splitting of the three-
dimensional divergence operator (4) into a two-dimensional contribution in the
transverse plane and a longitudinal one along the z coordinate. The transverse
contribution of the flux on the right-hand-side of relation (9) is integrated along
the longitudinal direction in vector p. Thus this contribution acts as a source
term along the one dimensional longitudinal convection/diffusion formulation
on the right-hand-side of relation (8). This splitting which is allowed from
the integration of the flux along the longitudinal direction in (9), is possible
for longitudinally invariant problems hereby considered. It then permits the
formal integration of the solution along the longitudinal direction and reduces
the dimensionality of the problem from three to two.

Introducing the following unbounded operator A : D(A) ⊂ H 7→ H on an
Hilbert space H and with domain D(A) (whose definitions follow), system (8)
takes the form of an ODE on the infinite dimensional space H with unknown
Φ(z) ∈ H

d

dz
Φ(z) = AΦ(z) , Φ(z) =

∣

∣

∣

∣

T (z)
p(z)

, A =

(

Pe vk−1 −k−1 div(·)
k∇· 0

)

.

(10)

The space H is defined as the Hilbert spaces product H = L2(Ω)× [L2(Ω)]2,
where [L2(Ω)]2 is the space of square integrable vector valued functions on Ω.
H is equipped with the following scalar product,

(Ψ1,Ψ2)H =

(∣

∣

∣

∣

T1
p1

,

∣

∣

∣

∣

T2
p2

)

H

=

∫

Ω

T1T2k dx +

∫

Ω

p1 · p2k
−1 dx . (11)

Note that this scalar product on H is equivalent to the canonical one (taking
k = 1) by using assumption (3). It has been modified to ensure the symmetry
of the operator A.
Relative to a homogeneous Dirichlet boundary condition, the domain D(A) is
given asD(A) := H1

0(Ω)×H(div,Ω), where H(div,Ω) = {p ∈ [L2(Ω)]2, div(p) ∈ L2(Ω)}
in the distribution sense. We shall refer to [4] for the basic properties of the
space. Such a definition of D(A) ensures that A : D(A) ⊂ H 7→ H in (10) is
well defined.


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Proposition 1. The operator A is dense and symmetric

∀ Ψ1,Ψ2 ∈ D(A) : (AΨ1,Ψ2)H = (Ψ1, AΨ2)H . (12)

Proof. The density of A directly follows from its definition. Denoting Ψj =
∣

∣

∣

∣

Tj
pj

, j = 1, 2, using the Green formula and the fact that Tj ∈ H1
0(Ω) yields

(AΨ1,Ψ2)H =

∫

Ω

Pe vT1T2 dx −

∫

Ω

div (p1)T2 dx +

∫

Ω

∇T1 · p2 dx

=

∫

Ω

Pe vT2T1 dx +

∫

Ω

p1 · ∇T2 dx −

∫

Ω

T1 div (p2) dx

= (Ψ1, AΨ2)H .

2.2 Spectral analysis of A

In this section, the main theoretical result of our study is proved. We show
that A is self adjoint and that (0 excepted), its spectrum is made of eigenvalues
of finite order only, the corresponding eigenfunctions forming a Hilbert (com-
plete) base of (kerA)⊥ = ranA. We observe that denoting by Ψn = (Tn,pn)
the components of the nth eigen-function (AΨn = λnΨn), and introducing
T (x, y, z) = eλnzTn(x, y), we have

div(k∇Tn) + λ2nkTn = λnPe vTn and div(k∇T ) + k∂2zT = Pe v∂zT ,

and T is a solution of the original energy equation (4). Incidentally, we also
recover the so-called eigen-values/functions of the previously quoted literature
[1, 2, 6, 5, 13, 26, 27, 15, 25]. This theorem therefore brings full legitimacy to
the decompositions routinely found in the literature.

Theorem 1. A : D(A) ⊂ H 7→ H is self-adjoint and has a compact resolvent.
We introduce the Kernel of A , kerA = {(0,p), p ∈ H0(div,Ω)}, where
H0(div,Ω) = {p ∈ H(div,Ω), div p = 0}. Then there exists a Hilbert base
(Ψn)n∈N of ranA = (kerA)⊥ composed of eigen-functions: Ψn ∈ D(A), AΨn =
λnΨn, ‖Ψn‖H = 1. The coordinates of Ψn are denoted Ψn = (Tn,pn) =
(Tn, k∇Tn/λn). We therefore have

D(A) =

{

Ψ ∈ H ,
∑

n

|λn(Ψ,Ψn)H|
2 < +∞

}

, AΨ =
∑

n

λn(Ψ,Ψn)HΨn ,

for all Ψ ∈ D(A).
Moreover this base can be split into two parts

(

Ψ+
i

)

i∈N
and

(

Ψ−
i

)

i∈N
such that

0 > λ+1 ≥ · · · ≥ λ+j ≥ · · · → −∞ , 0 < λ−1 ≤ · · · ≤ λ−j ≤ · · · → +∞ , (13)

The corresponding eigen-functions are denoted Ψ±
n . Eigen-values(functions),

according to this decomposition, are respectively called upstream (+) and
downstream (-) .


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In the proof, we shall use the following regularity result (see[14] p. 192-196):

Lemma 1. For any f ∈ L2(Ω). there exists a unique T ∈ H1
0(Ω) satisfying

div(k∇T ) = f in the distribution sense. That solution also satisfies on each
sub-domain Ωi: Ti ∈ H2(Ωi), div(k∇T ) = f in L2(Ωi) (strong sense) and
‖Ti‖H2(Ωi) ≤ C‖f‖L2(Ω) (C independent on f). Moreover T satisfies on every
interface Γi,j the coupling conditions (7) in the trace sense.

Proof. A is dense and symmetric. Since vk−1 ∈ L∞(Ω), A is also a continuous
perturbation of the symmetric operator A0 : D(A) ⊂ H 7→ H defined as

A0 =

(

0 −k−1 div(·)
k∇· 0

)

. Using the Kato-Relish theorem (see e.g. [23] p.

163), the self-adjointness of A0 implies the self-adjointness of A. To prove the
self-adjointness of A0, one shows that A0 + i has range H (see e.g. [22]).
Let us fix (f,q) ∈ H. We search for T ∈ H1

0(Ω) such that

∀ ϕ ∈ H1
0(Ω) :

∫

Ω

Tϕk dx+

∫

Ω

k∇T · ∇ϕ dx =

∫

Ω

∇ϕ · q dx−

∫

Ω

iϕfk dx .

On the right one clearly has a continuous linear form on H1
0(Ω), whereas the left

side exhibits a symmetric, positive, continuous and coercive bilinear product on
H1

0(Ω). As a result, the Lax-Milgram theorem applies (see e.g. [8]) ensuring the
existence and uniqueness of such a T . Let us define ip = q− k∇T ∈ [L2(Ω)]2.
From the above equality we obtain

∀ ϕ ∈ C∞
c (Ω) :

∫

Ω

ip · ∇ϕ dx =

∫

Ω

k(if + T )ϕ dx .

This equality shows that, in the distribution sense, div(p) ∈ L2(Ω) and we
have p ∈ H(div,Ω). Thus Ψ = (T,p) ∈ D(A) and one has (A0 + i)Ψ = (f,q),
so proving the self adjointness of A0 and A.

To prove that A has a compact resolvent, we introduce the pseudo inverse
of A, A−1 : ranA 7→ (kerA)⊥ ∩D(A) = ranA ∩D(A) and we prove that A−1

is compact.
For this let us consider a bounded sequence (fn,qn) ∈ ranA. There is a unique
(Tn,pn) ∈ ranA ∩ D(A) satisfying A(Tn,pn) = (fn,qn). (Tn) then satisfies
k∇Tn = qn and therefore forms a bounded sequence in H1

0(Ω). The compact
embedding H1

0(Ω) 7→ L2(Ω) thus implies that (Tn) is relatively compact in
L2(Ω).
We now introduce ϕn ∈ H1

0(Ω) the unique variational solution to div(k∇ϕn) =
Pe vTn − kfn. Let us prove that pn = k∇ϕn. Since A(Tn, k∇ϕn) = (fn,qn),
we have to check that (Tn, k∇ϕn) ∈ (kerA)⊥

∀ p ∈ H0(div,Ω) :

(∣

∣

∣

∣

Tn
k∇ϕn

,

∣

∣

∣

∣

0
p

)

H

=

∫

Ω

∇ϕn · p dx = −

∫

Ω

ϕn div(p) dx = 0

Lemma 1 then applies and ensures that ϕn|Ωi
∈ H2(Ωi) and that, (Pe vTn−kfn),

being bounded in L2(Ω), (ϕn|Ωi
) is bounded in H2(Ωi). Therefore both com-
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ponents of (∇ϕn|Ωi
) are bounded in H1(Ωi), thus implying that both com-

ponents of (pn|Ωi
) also are bounded in H1(Ωi). The compact embedding

H1(Ωi) ⊂ L2(Ωi) then ensures that (pn) is relatively compact in L2(Ω).
Consequently, A−1 is compact and self adjoint on the separable space ranA.

Therefore there exists a Hilbert base (Ψn)n∈N for ranAmade of eigen-functions:
Ψn ∈ D(A), Aψn = λnΨn.
A−1 being compact, 0 is the only limit point for sub-sequences of (1/λn) and
thus {−∞,+∞} are the only two possible limit points for sub-sequences of
(λn). It is easily seen that, whatever the value of α ∈ R, A + α is bounded
neither below nor above. The spectrum is therefore also neither bounded below
nor above. Thus {−∞,+∞} are both limit points for the spectrum, implying
decomposition (13).

2.3 Solution derivation

The results of the previous section are used here to derive the solution Φ(z) =
(T (z),p(z)) to (8)-(10) such that T satisfies the boundary, limit and interface
conditions in (5)-(6) and (7). We point out that the boundary condition (5)
implies that, for z < 0, one does not have Φ(z) ∈ D(A). For this to be taken
into acount, we shall consider the (maximal) extension A to operator A

• D(A) = H1(Ω)× H(div,Ω),

• A : D(A) 7→ H has the same algebraic expression as A in (10).

Unlike A, A is not symmetric

(AΨ1,Ψ2)H = (Ψ1, AΨ2)H +

∫

∂Ω

T1p2 · n ds−

∫

∂Ω

T2p1 · n ds , (14)

for all pairs of functions in D(A), with the usual notations.

Definition 1. We shall define a solution to (8)-(10) with conditions (5),(6)
and (7) as a function Φ : z ∈ R 7→ Φ(z) = (T (z),p(z)) ∈ H such that

• Φ ∈ C (R,H) (continuity on R),

• Φ ∈ C1 (R− {0},H) (continuous Frechet differentiability on R− {0}),

• ∀z ∈ R− {0}, Φ(z) ∈ D(A) and
d

dz
Φ(z) = AΦ(z),

and such that T satisfies the limit condition (6) as z → ±∞ in H’s norm and
the boundary, interface conditions (5)-(7) for all z 6= 0 in the trace sense.

That formalism being stated:


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Proposition 2. There exists a unique solution Φ to (8)-(10) with conditions
(5),(6) and (7). Defining the constants (αn),

αn :=
1

λ2n

∫

∂Ω

k∇Tn · n ds =
1

λn

∫

∂Ω

pn · n ds, (15)

this solution is given as follows

Φ(z) =











−
∑

n

αnΨn +
∑

n

α−
n e

λ−

n zΨ−
n z ≤ 0

−
∑

n

α+
n e

λ+
n zΨ+

n z ≥ 0
(16)

The expression can moreover be simplifyed and the temperature field is given
by

T (z) =











1 +
∑

n

α−
n e

λ−

n zT−
n z ≤ 0

−
∑

n

α+
n e

λ+
n zT+

n z ≥ 0
(17)

Since A is not sectoral (is not the infinitesimal generator of an analytic
semi-group, see e.g. [10]), some precautions have to be taken in demonstrating
the proposition. A detailed proof follows.

Proof. Using the Hilbert base (Ψn) of (kerA)⊥, the solution Φ is sought in
the form Φ(z) =

∑

n(Φ(z),Ψn)HΨn. All coefficients must therefore satisfy

the ODE
d

dz
(Φ(z),Ψn)H = (AΦ(z),Ψn)H. Then using (14), the boundary

condition (5) and the equality k∇Tn = λnpn, we find that

d

dz
(Φ,Ψn)(z) = (Φ,AΨn)(z) + ω(z)

∫

∂Ω

pn · n ds = λn(Φ,Ψn)(z) + λnαnω(z) ,

where ω(z) = 0 when z > 0 and ω(z) = 1 otherwise. Looking for a bounded
and continuous solution to this ODE on R gives us a unique solution, according
to λn’s sign (λ+n < 0 and λ−n > 0)

(Φ,Ψ−
n )(z) =

{

α−
n

(

eλ
−

n z − 1
)

z < 0

0 z > 0
, (Φ,Ψ+

n )(z) =

{

−α+
n z < 0

−α+
n e

λ+
n z z > 0

.

This gives us decomposition (16) and the uniqueness of the solution. Let us
now prove that Φ defined by (16) is a solution with the sense in 1.
Consider the (unique) function ϕ∞ ∈ H1

0(Ω) such that div(k∇ϕ∞) = Pe v. We

introduce Φ∞ =

∣

∣

∣

∣

1
k∇ϕ∞

∈ H, a function that clearly satisfies Φ∞ ∈ D(A),

AΦ∞ = 0 and Φ∞ ∈ (kerA)⊥. Let us prove that Φ∞ = −
∑

n αnΨn (thus
explaining how to go from (16) to (17)). Since λnpn = k∇Tn

(Φ∞,Ψn)H =

∫

Ω

Tnk dx+
1

λn

∫

Ω

k∇ϕ∞ · k∇Tnk
−1 dx =

∫

Ω

Tnk dx−
1

λn

∫

Ω

Pe vTn dx,
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and using the equality λnkTn = Pe vTn −
1

λn
div(k∇Tn), we obtain

(Φ∞,Ψn)H = −
1

λ2n

∫

Ω

k∇Tn · n ds = −αn .

Thus −
∑

n αnΨn = Φ∞ ∈ H, and it follows that Φ±
∞ = −

∑

n α
±
nΨn ∈

H and Φ∞ = Φ−
∞ + Φ+

∞. We use the fact that Φ ∈ D(A) if and only if
∑

n |λn(Φ,Ψn)H|
2 < +∞.

Since λ+n →
n

−∞ (resp. λ−n →
n

+∞), it is straightforward to check that the

two functions,

f(z) =
∑

n

α−
nΨ

−
n e

λ−

n z , g(z) =
∑

n

α+
nΨ

+
n e

λ+
n z,

satisfy:

• f ∈ C ((−∞, 0],H), g ∈ C ([0,+∞),H) (continuity),

• f ∈ C1 ((−∞, 0),H), g ∈ C1 ((0,+∞),H) (continuous Frechet differen-
tiability),

• for z < 0 (resp. z > 0), f(z) ∈ D(A) (resp. g(z) ∈ D(A)) and
d

dz
f(z) =

Af(z) (resp.
d

dz
g(z) = Ag(z)).

The function Φ in (16) can be rewritten as Φ(z) = Φ∞ + f(z), z ≤ 0 and
Φ(z) = −g(z), z ≥ 0 (which functions actually match at z = 0 using Φ∞ =
Φ−
∞ + Φ+

∞). It is therefore continuous on R, Frechet differentiable on R− {0},

Φ(z) ∈ D(A) and
d

dz
Φ(z) = AΦ(z) for z ∈ R− {0} since AΦ∞ = 0. It is also

clear that T (z) satisfies the limit condition (6) and the boundary condition (5)
for z 6= 0.
It remains to be proved that it also satisfies the interface conditions (7) for
z 6= 0. For this, let us consider the previously introduced function f whose
components will be denoted as f(z) = (t(z),p(z)). Since λ−n →

n
+∞, it is easy

to check that, for z < 0, Af(z) ∈ D(A). Therefore k∇t(z) ∈ H(div,Ω) which
implies that div(k∇t)(z) ∈ L2(Ω) for z < 0. Applying 1, it follows that t(z)
satisfies the interface conditions (7). The same result applies to g(z) for z > 0
and, as a result, to T (z) for z 6= 0.
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3 Mixed variational formulation and approxi-

mation

3.1 Mixed variational formulation

Let us consider the following variational problem: find (λ, T,p) ∈ R×L2(Ω)×
H(div,Ω) such that, ∀(u,q) ∈ L2(Ω)× H(div,Ω),

∫

Ω

Pe vTu dx −

∫

Ω

u div(p) dx = λ

∫

Ω

Tuk dx (18)

−

∫

Ω

T div(q) dx = λ

∫

Ω

p · qk−1 dx . (19)

It is clear that whenever Ψn is an eigen-function as given in theorem 1, then
(λn, Tn,pn) satisfies the variational problem above. Conversely if (λ, T,p)
satisfies (18)-(19) for all (u,q) ∈ L2(Ω)×H(div,Ω), then the second line implies
that T ∈ H1

0(Ω) (using the dense embedding of H(div,Ω) into H1/2(∂Ω)′, see
[4]). Therefore Ψ = (T,p) ∈ D(A) and satisfies AΨ = λΨ. Thus Ψ =
Ψn for some n and solving (18)-(19) is equivalent to finding all the eigen-
values/functions of operator A.

3.2 Axi-symmetrical implementation

In order to test this variational formulation, we have derived a one-dimensional
version of the problem which is interesting in the case of an axi-symmetrical
configurations. The motivation is to test the convergence of the problem nu-
merically on known solutions. The simplest case is convection-diffusion inside
a single cylinder for which, in the limit of large Péclet number, we should
recover the Graetz spectrum [9] for the operator A. In this section we con-
sider the somewhat more general case of two concentric cylinders, for which
Ω = Ω1 ∪ Ω2, with Ω1 an inner disk filled with liquid and Ω2 an outer solid
corona. When the size of the second domain to set to zero, the single cylinder
problem is found again as a particular case.

A liquid flows inside Ω1 with a unidirectional, longitudinal, dimensionless
velocity v(r)ez which varies from a maximal value at the cylinder center r = 0
to zero at the boundary with the second cylinder placed at r = r0. We choose
the dimensionless velocity to follow the usual Poiseuille flow profile v(r) =
2Pe (r20 − r2), although any continuous profile being zero at the boundary
could be chosen. The velocity normalization is set so that normalized surface
averaged velocity flux is the Péclet number

1

|Ω1|

∫

Ω1

v(r) dx = Pe

Where |Ω1| = πr20 is the inner disk area associated with the first inner cylinder
section. In corona Ω2 the velocity is taken to be zero; no convection occurs
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in this second domain. Continuity of flux and temperature (7) are applied at
the domain frontier ∂Ω2 ∩ ∂Ω2 with uniform conductivity k = 1. The radial
dimensionless distance is chosen so that r = 1 corresponds to the outer bound-
ary of the second cylinder ∂Ω2 − ∂Ω1 ∩ ∂Ω2 where a homogeneous Dirichlet
boundary condition (5) is chosen.
Problem (18)-(19) is approximated on a regular one-dimensional mesh dis-
cretizing coordinate r ∈ [0, 1] with index i on grid r = i/n with i ∈ {1, n}.
We adopt here the classical mixed finite element approximation of order 0 of
Raviart and Thomas P0 × RT0 (see e.g. [4]) to the present axi-symmetrical
1D formulation. Base elements for the scalar T are therefore P0 piecewise con-
stant functions over the grid elements, whereas base elements for the ’vector ’
p are the P1 continuous piecewise affine functions over the grid elements: thus
re-establishing the flux continuity at the grid points.
The generalized linear eigenvalue problem resulting from this discretization
choice is as follows

AΨn =

(

a b

bT 0

)

Ψn = λn

(

c 0
0 d

)

Ψn, (20)

Where Ψn is a 2n component vector whose first n components are the discrete
temperature field Tn = (Ti)i∈{1,n} approximating Tλ and the following n + 1
to 2n components describe pn approximating the gradient field pλ = ∂rTλ/λ
which is one-dimensional in this axi-symetrical context. The n×n matrices a,
b, c and d can be computed analytically and admit the following coefficients

aij = −δij
Pe

2r0n4 (2i− 1)(2i2 − 2i− 2r20n
2 + 1)

bij = − 1
n
( δiji+ δi−1j(1− i) )

cij = δij
2i−1
2n2

dij = − 1
12n2 ( δij8i + δi−1j(2i− 1) + δi+1j(2i+ 1) ) ,

(21)

where (i, j) ∈ {1, n}2 and δ is the Kronecker symbol.

3.3 Numerical results and convergence

In the generalized eigenvalue problem (20), one notes that the matrice A is
symmetric and that the right hand side mass-matrix Diag(c,d) is symmetric
positive definite. Therefore, problem (20) can be numerically solved using
the variant of the Lanczos algorithm for generalized eigenvalue problems (see
e.g. [24]). The resulting first eigenvectors and eigenvalues were computed
using the Fortran library ARPACK and sparse matrix storage. The results
presented here correspond to two particular configurations:

• a single cylinder with a single radial domain Ω1 for which r0 = 1 and,

• two concentric cylinders whose radius ratio is two, so that r0 = 1/2.

We study the numerical convergence of the first eigenvalues and first eigenvec-
tors when the Péclet number is varied from low to high values. We systemati-
cally compared the discrete numerical results with reference solutions obtained
with another iterative method explained in the appendix A.
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Figure 2: (a) Relative numerical error for eigenvalues λ+1 , λ
+
2 , and λ−1 for

Pe = 0.1. The dotted lines corresponds to a −1 slope associated with a ∼ 1/n
behavior. (b) Same convention as (a) for Pe = 10.

3.3.1 Single cylinder : r0 = 1

In the case of a single cylinder, for large values of the Péclet number, the
upstream part of A’s spectrum (positive eigenvalues λ−n associated with the
z < 0 region) is difficult to compute numerically for it diverges with Pe [21].
In contrast, the downstream part of the spectrum (negative eigenvalues λ+n
associated with the z > 0 region) converges to the Graetz spectrum, and
decays to zero as 1/Pe when the Péclet number increases.

Let us first discuss the eigenvalue convergence. Figure 2 illustrates the
relative error E = |λn−λ|/|λ| associated with the first two downstream eigen-
values λ+1 and λ+2 and for the first upstream one λ−1 . it can be seen in this
figure that the convergence of the numerical estimation is consistent with the
chosen classical mixed finite element approximation space P0×RT0, for which
a ∼ 1/n behavior is expected. Furthermore, the strong influence of the Péclet
number on convergence rate can also be observed. For small Péclet number,
the spectrum is almost symmetrical, so that one expects the convergence for
λ+1 and λ−1 to be very close, as observed on figure 2a. In contrast, as the Péclet
number increases, there is a distinct shift in the convergence curve. The closer
the eigenvalue is to zero, the easier it is to compute. Since λ−1 diverges with
Pe , it is more difficult to approximate numerically and, then, the relative er-
ror associated with λ−1 in figure 2b is 30% larger than the one associated with
λ+1 for Pe = 10. This difference further increases with Péclet number. We
also wish to illustrate the numerical convergence on the eigenfunction. Figure
3 illustrates the eigenvector computation for the temperature and gradient
fields associated with λ+1 , λ

+
2 and λ−1 eigenvalues. In the case of small Péclet

numbers, the asymptotic symmetry of the eigenvalue spectrum also implies a
symmetry of the eigenvectors,dswhich is clearly visible when comparing the 1+
and 1− fields in Figure 3. The associated leading order eigenfunction shows a
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Figure 3: (a) Temperature field T (i/n) i ∈ {1, n} for discretization n = 20
and Pe = 0.1 for the first two downstream eigenvectors 1+ and 2+ and the
first upstream eigenvector 1−. Normalization T (0) = 1 has been imposed. (b)
Temperature gradient p = ∂rT (i/n)/λ for discretization n = 20 and Pe = 0.1.
(c) Same convention as (a) for discretization n = 320. (d) Same convention as
(b) for discretization n = 320.

single maximum at r = 0, the cylinder center, and obviously decreases to zero
at r = 1 for the Dirichlet boundary condition to be fulfilled. When the associ-
ated eigenvalue order increases, the corresponding eigenfunction has as many
oscillations as the eigenvalue order. For example for λ+2 , two critical points
can be seen, a minimum and a maximum, for the eigenfunction in Figure 3.
The superposition between the discrete numerical computation and the “ex-
act” solution is also illustrated in Figure 3. One can see that the comparison
for the gradient depicted in Figure 3(b) is rough for n = 20, but no differ-
ence is visible between the two for n = 320 in Figure 3(d). The convergence
to the exact solution is also illustrated in figure 4 for Pe = 10. In this case
the two eigenfunctions associated with λ+1 and λ−1 differ markedly. The first
one, associated with λ+1 , still reaches a maximum at the tube center r = 0,
whereas the maximum position of the second one, associated with λ−1 , is shifted
close to the tube boundary at r = 1. Furthermore, this second eigenfunction
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Figure 4: Same conventions as figure 3 for Pe = 10.

decays to zero at the tube center. The reason for this distinct behavior is
now the opposite role of convection for these two temperature profiles. For the
downstream eigenfunction associated with λ+1 , longitudinal convection prevails
over diffusion. Since this convection is maximum at the tube center, it dic-
tates the shape of the corresponding temperature profile. For the upstream
eigenfunction associated with λ−1 , retro-diffusion is the only mechanism for
this temperature to display a back-flow exponential decay. Hence, since the
convection is maximal at the tube center, retro-diffusion is maximum at the
tube boundary, where the velocity vanishes. A boundary layer develops near
r = 1, the thickness of which decays to zero as the Péclet number diverges.
This boundary layer is responsible for the numerical difficulties arising in the
computation of the upstream part of the spectrum at large Péclet numbers.
The slower convergence of the eigenvectors 1− is clearly visible in figure 4a
and 4b for a rough discretization of n = 20 points. Although in this case,
the first two downstream eigenfunctions, 1+ and 2+ are well approximated by
the corresponding eigenvectors, this is not the case for the upstream one 1−.
Nevertheless, for a sufficient discretization of n = 320 points, the convergence
can be satisfactory as illustrated on figure 4c,d.

We finally wish to illustrate the convergence on the eigenvector by com-
puting the relative error E =

√

(Ψn −Ψ,Ψn −Ψ)H/(Ψ,Ψ)H built with the H
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norm (11) for a discrete eigenvector Ψn to converge to the theoretical one Ψ.
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Figure 5: (a) Relative error for eigenvectors associated with eigenvalues λ+1 ,
λ+2 , and λ

−
1 for Pe = 0.1. The dotted lines corresponds to a −1 slope associated

with a ∼ 1/n behavior. (b) Same convention as (a) for Pe = 10.

Figure 5 shows the convergence of the relative error for increasing point
number n. As expected, 1/n behavior is observed for both Pe = 0.1 and
Pe = 10, but the error is larger in the latter case.

3.3.2 Two concentric cylinders : r0 = 1/2

In the case where two domains are present, it is interesting to test the numerical
implementation of the flux and temperature continuity (7) between the two
domains in this formulation. Figure 6 shows some eigenfunction profiles at
the same Péclet numbers as those previously illustrated for the single cylinder
case, Pe = 0.1 and Pe = 10. It can be observed on this figure that the
temperature continuity at the domain border r = r0 = 1/2 is excellent even
for a modest discretization n = 20. The same observation can be made on the
gradient field. The convergence to the exact solution which can be visually
checked on figure 6c is better than the one previously obtained with the same
parameter in figure 4a. This is due to the fact that there is no boundary layer
in the latter case when two domains are present. The retro-diffusion of the
upstream eigenvector 1− is possible in the second annular domain Ω2, so that it
is not confined in a small region near the boundary. The resulting temperature
gradients are much lower and do not diverge with the Péclet number. Hence,
the maximum temperature observed for the 1− eigenvector of figures 6c and
6d is indeed localized inside the second domain at a radial coordinate larger
than 1/2. Obviously, the temperature values associated with this maximum
are much lower than in the case of the single cylinder, due to the smoothing
effect associated with permitting retro-diffusion in the second domain Ω2.

The convergence rate, which can be computed either for the eigenvalues or
the eigenvectors, follows the same scaling as those already found for the single
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Figure 6: (a) Temperature field T (i/n) i ∈ {1, n} for discretization n = 20
and Pe = 0.1 for the first two positive eigenvectors 1+ and 2+ and the first
negative eigenvector 1−. Normalization T (0) = 1 has been imposed. (b) Same
convection as (a) for for discretization n = 320. (c) Same convention as (a)
Pe = 10. (d) Same convention as (b) for discretization n = 320.

cylinder case. The convergence rate is only a little better (not shown).

Conclusion

This paper has presented a new approach for complex three-dimensional config-
urations of convection-diffusion in unidirectional flows. We justify a separation
of variable solution approach by defining the eigenvalue/eigenfunction decom-
position of an appropriate mixed operator. The theoretical analysis shows that
the properties of this operator allow a non-sectorial decomposition of the solu-
tion in longitudinally exponentially decaying solutions. This approach permits
full three-dimensional problem to be numerically restricted to two-dimensions.
Furthermore, a naturally efficient numerical discretization has been proposed
using finite-elements. The relevance and efficiency of such a discretization has
been analyzed in simple configurations.
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A Reference solutions for problems with axial

symmetry

In this appendix, we give some details about the analytical method used in 3
for the analysis of the numerical results. The method is based on a property
of the eigenfunctions called λ−analycity : in the axi-symmetrical framework,
any eigenfunction Tλ can be the expanded in the form

Tλ(r) =
∑

n∈N

tn(r) λ
n . (22)

In this description the closure functions {tn}n∈N are independent of the eigen-
value λ considered and also of the considered boundary condition at r = 1.
They can be computed using a simple iterative process for the computation of
the spectrum and eigenfunctions with a Maple code.

The convergence of the λ-analycity method has been established for gen-
eral axi-symmetrical configurations. The proof being the topic of a forecoming
paper, and for the sake of simplicity, we focus our attention here on the treat-
ment of the Graetz problem. In this case, the proof for the convergence of
the λ-analycity method is available in [21]. The eigenvalues Tλ are defined as
follows, on the interval [0, 1]:

Tλ(0) = 1 , ∆cTλ = v(r)λT ,

where ∆c stands for the cylindrical part of the Laplace operator ∆c ≡ 1/r∂r(r∂r).
Eigenfunctions Tλ then read (22) where the tn(r) fulfill the recursive scheme:

t0(r) = 1 and: ∆ctn = v(r)tn−1(r) , tn(0) = 0 for n ≥ 1 .

We point out that this scheme actually has a unique solution thanks to the
degeneracy of the ODE at r = 0.
The spectrum, in the case of a Dirichlet boundary condition, is thus defined
as:

Λ =

{

λ ,
∑

n∈N

tn(1) λ
n = 0

}

.

It can be approximated using truncations, with an exponential rate of conver-
gence.
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