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Abstract

The monodomain equations model the propagation of the action
potential in the human heart: a very sharp pulse propagating at a high
speed, which computation require fine unstructured 3D meshes. It is a
non linear parabolic PDE of reaction diffusion type, coupled to one or
several ODE, with multiple time-scales.
Numerical difficulties, such as unstructured meshes and stability are
addressed here through the use of a finite volume method. Stability
conditions are given for two time-stepping methods, and two example
sets of ODEs, convergence is proved and error estimates are computed.

Introduction

Computer models of the electrical activity in the myocardium are increasingly
popular: the heart’s activity generates an electromagnetic field in the torso,
and produces a surface potential map which measure is the well-known elec-
trocardiogram (ECG). It gives a non-invasive representation of the cardiac
electrical function.
This paper focuses on the study of a 3D finite volume numerical method used
to compute the electrical activity of the myocardium on unstructured meshes,
and specifically gives conditions on the time-step to ensure a L∞ stability prop-
erty, for an explicit and a semi-implicit time-stepping method. Consequently,
convergence results are proved.
The electrical activity on the torso was first demonstrated to be directly con-
nected to the heart beat more than 100 years ago [26]. It was first suggested
to be well represented by a dipole. Afterward, more complex models based
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on dipole representation have also been used among which the famous oblique
dipole layer [5]. This is the top-down approach, providing heuristic models.
Conversely, in the 50’s Hodgkin and Huxley [11] explained how the electrical
activity of some nerve cells can be modeled from a microscopic description of
ionic currents through the membrane. Due to the sophistication of experimen-
tal techniques, there are currently many such models, see [12] for reviews.

Recent studies in electrocardiology assume the anisotropic cardiac tissue to
be represented at a macroscopic level by the so-called “bidomain” model, de-
spite the discrete structure of the tissue. We refer to [8] for a mathematical
derivation of the bidomain equations, and to [9, 12] for reviews on the bido-
main equations. A simpler version called the “monodomain” model is obtained,
assuming an additional condition on the anisotropy of the tissue. Although
the “bidomain” one is far more complex, both models are reaction-diffusion
systems [24, 3] of the general form

∂tw = Aw + F (w), (1)

where Aw = div(σ(x)∇w) and σ(x) is a coercive positive symmetric tensor.
Only the monodomain model is addressed here.
Any microscopic description of the cell membrane can be inserted into the mon-
odomain equations, providing a large variety of macroscopic models, ranging
from 2 to about 100 equations. Although the approach would be the same
for complex ones, this paper only treats the case of two simplified 2 variables
models, namely the well-known FitzHugh-Nagumo one [7] and the one from
Aliev-Panfilov [18]. The latter is very well suited to the myocardial cell, and
often used in practical computer models [17, 21, 22].
Computer models of the heart based on these equations (mono or bidomain, 2
or more ionic currents) currently are very popular in numerical electrophysi-
ology. Because there may be many different time scales in the reaction terms,
the solutions exhibit sharp propagating wave-fronts. For this reasons, only
the recent improvement of computing capabilities allow 3D computations to
be achieved. Moreover, until very recently, they were restricted to differences
methods on structured grids and simple geometries [17, 19, 13]. A few re-
searchers recently started to study computations on 3D unstructured meshes,
coupled to an explicit, semi-implicit or fully-implicit time-stepping method
[14, 2]. The analysis of a Galerkin semidiscrete space approximation was con-
ducted by S. Sanfelici [20]. To our knowledge, there has been no attempt
at studying the effects of the time-stepping method on the stability of the
approximation. As a matter of fact the problem of stability in time of fully
discretized approximations is as difficult as the problem for global stability for
the continuous solution of reaction-diffusion systems.

The main issue of this paper is to study the theoretical stability criterion
for the explicit and semi-implicit Euler methods; and to derive error estimates
for the approximate solutions.
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Our idea is based on the proof of existence of global solutions to reaction-
diffusion systems as presented in [24]: solutions for t ∈ [0, T ) extend to any
t > 0 due to the existence of strictly contracting regions Σ for the flow F (w). It
is known [24] that such regions are invariant sets for regular enough solutions
of the system (1). Here, we prove in theorems 1, 1 and 2 that under suitable
assumptions on the time-step, the regions Σ are still invariants sets for the dis-
crete solution, proving as a consequence L∞ bounds on the discrete solution.
The convergence is proved and error estimates established in theorem 3.
Among the numerical methods suited to 3D computations on unstructured
meshes, we choose a finite volume method introduced and analyzed in [6],
well suited to general unstructured meshes and especially to mesh refinement,
needed here to capture sharp wave-fronts. Moreover, it provides a sort of max-
imum principle, that may not be achieved for most finite element formulations
but is the key ingredient of our proof.

The next section details the mathematical model, and recall some needed
results of existence and stability for solutions for reaction-diffusion systems,
essentially based on [24, 3, 10]. Section 3 briefly explains the finite volume
technique for space discretization, and section 4 and 5 respectively concerns
the stability and convergence results and proofs.

1 The studied problem

1.1 Monodomain model

At a microscopic scale, the surface membrane of the myocardial cells delimits
an intra- and an extra-cellular medium, both containing ionic species. The
model accounts for the dynamics of the trans-membrane ionic currents Iion
and difference of potential u, per surface unit. The membrane is considered to
have a capacitive behaviour, so that the total current through the membrane
is

C
du

dt
+ Iion = I, (2)

where C is the capacitance per surface unit of the membrane. Furthermore,
the cells are self-organized into myofibers in order to form the complete my-
ocardium.
At a macroscopic scale, due to a homogenization process [8], the trans-membrane
potential u is defined on the whole heart Ω considered as the super-imposition
of the intra- and extra-cellular medium. From the microstructure of the muscle
fibers is derived at each point x ∈ Ω the positive definite tensor of conductivity
σ(x) = diag(cl, ct, ct) in the local orthonormal basis (l, n1, n2), where l is a unit
vector tangent to the fiber at x. With the conductivity, the volumetric current
can be expressed in terms of u, and equation (2) becomes

ρC
du

dt
+ ρIion = div(σ∇u), (3)
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where ρ ≫ 1 is the ratio of membrane surface per unit of volume.
The fibers are tangent to the boundary ∂Ω of the heart. As a result the normal
direction to the boundary at point x ∈ ∂Ω is an eigen-direction for σ(x) and
the conductivity tensor satisfies the following boundary condition:

∀ x ∈ ∂Ω, σ(x) · n(x) = λ(x)n(x) (λ(x) > 0), (4)

where n is the unit outward vector field on ∂Ω.
First modeled by Hodgkin and Huxley in [11], the ionic current Iion decomposes
into the contribution of several ionic channels Xi:

Iion = IX1
+ IX2

+ . . .+ IXp
. (5)

The states of the channels (open-closed) are described by gating variables
v = (v1, . . . , vp) which are controlled by ODEs,

dvi
dt

= εgi(u, vi), (6)

where the parameter ε ≪ 1 means that the recovery variables have slow dy-
namics compared to the potential u. The ionic current through the channel
Xi depends on u and v,

IXi
= −fi(u, v). (7)

Based on the original version, many such models have been constructed [1]
according to moreless complex experimental studies of the cells membrane.
Simplified versions of these models have been proposed, the simplest of which
is the well known FitzHugh - Nagumo one [7, 16]. It writes

Iion = −f(u, v) ≡ u(u− 1)(u− a) + v, g(u, v) = ku− v, (8)

where 0 < a < 1 and k > 0 are given parameters. It will be referred to as the
FHN model. For, it is adapted from the original model of Hodkin-Huxley [11],
it suits the behaviour of a nerve axon. For the myocardial cells, a simplified
model was proposed by Aliev and Panfilov [18] and has been widely used in
3D simulations of the human ventricles [17, 21]. It writes

Iion = −f(u, v) ≡ ku(u− 1)(u− a) + uv, g(u, v) = ku(1 + a− u)− v, (9)

where k > 0 and 0 < a < 1 are still given parameters. It will be referred to as
the AP model.
For the sake of simplicity, only the case of the AP and FHN models are
addressed, although the extension of our results to more complex ones shall
be straightforward. Equations (3), (5), (6), (7) rewrites in a dimensionless
framework and for one gating variable v,

εut = ε2 div (σ∇u) + f(u, v) (10)

vt = g(u, v), (11)


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where the functions f, g : R2 7→ R are given by (8) for the FHN model and by
(9) for the AP model.
The potential u shall satisfy a Neumann boundary condition:

∀ x ∈ ∂Ω, σ(x)∇u · n(x) = 0, (12)

meaning that no current flows out of the heart. No additional boundary condi-
tion is needed concerning v, since it is ruled point wise by an ODE. Of course,
an initial data is provided:

∀ x ∈ Ω, u(x, 0) = u0(x), v(x, 0) = v0(x). (13)

1.2 Existence, uniqueness and regularity of solutions

General results for the Cauchy problem (10)-(13) are recalled here. Such sys-
tems of PDE have been widely studied [10, 24, 3]. Only basic non-exhaustive
and non-optimal results are recalled, that occur under reasonable assumptions
expected from the physiological data. Furthermore, a framework for the proof
of existence of solutions for all t > 0 is drawn, that the numerical analysis will
follow.

Lemma 1 (Local Existence and Uniqueness). The equations (10)-(13) are
considered on a domain Ω ⊂ R

d (d = 1, 2, 3) with a C2 regular boundary ∂Ω.
The conductivity tensor σ is assumed C1 regular on Ω and such that

∀ x ∈ Ω, ∀ ξ ∈ R
d, ξTσ(x)ξ ≥ 0.

The function f and g are assumed locally Lipschitz.
If the initial data satisfy u0 ∈ H2(Ω), u0 verifying the boundary condition (12);
and v0 ∈ L∞(Ω), then the system (10)-(13) has a unique solution w(x, t) =
(u(x, t), v(x, t)) on Ω× [0, T ) for some T > 0, in the following (weak) sense:

• the mapping t 7→ w(t) ∈ L2(Ω) × L∞(Ω) is continuous on [0, T ) with
w(0) = (u0, v0),

• the mapping t 7→ w(t) ∈ L2(Ω)×L∞(Ω) is Frechet differentiable on (0, T )
with derivative t 7→ dw/dt(t) ∈ L2(Ω)× L∞(Ω),

• for t ∈ (0, T ), we have u(·, t) ∈ H2(Ω), f(w(·, t)) ∈ L2(Ω) and g(w(·, t)) ∈
L∞(Ω),

• for t ∈ (0, T ), equations (10), (11) and (12) respectively hold in L2(Ω),
L∞(Ω) and L2(∂Ω).

• Moreover with the regularity assumed on the initial data, the mapping
t 7→ w(t) ∈ L∞(Ω)× L∞(Ω) is continuous on [0, T ).

At last, note that T = +∞ if the reaction terms f , g are globally Lipschitz on
R

2.
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Lemma 2 (Regularity). With the additional assumptions,

• the derivatives of σ are ν-Hölder continuous on Ω, for some ν > 0 (ie
σ ∈ C1+ν(Ω)),

• σ is uniformly elliptic on Ω,

∃α > 0, ∀ x ∈ Ω, ∀ ξ ∈ R
d, ξTσ(x)ξ ≥ α|ξ|2.

• the initial data is such that v0 ∈ Cν(Ω) for some ν > 0,

the solution w(x, t) is continuously differentiable in the variable t on Ω× (0, T )
and u(·, t) ∈ C2(Ω) for t ∈ (0, T ). So, (10)-(13) hold in a classical (strong)
sense.

1.3 Stability of solutions and invariant regions

The solutions of lemma 1 exists only for 0 < t < T , where T depends both on
the initial data and on f and g. But of course, only existence for all time t > 0
makes sense in the physiological phenomena. For our solution to be relevant
with the physiological framework it is moreover needed to have uniform L∞

bounds on u and v. This is the main difficulty, referred to as stability. It can
be studied in two ways.
First, assuming a polynomial growth at infinity for f and g, Sobolev embed-
dings [15] are used to uniformly bound u and v in Sobolev spaces and then
find solutions for all time t ≥ 0, see [10, 25]. Such techniques can be applied to
solutions with weaker regularity as in lemma 2. However L∞ bounds usually
are unreachable although physiologically relevant.
The second way to study the stability is to construct invariant regions as de-
veloped in [24, 3]. An invariant region for the Cauchy problem (10)-(13) is a
closed subset Σ ⊂ R

2 such that a solution of (10)-(13) having its initial data
inside Σ’s interior remains inside Σ. Such a solution is uniformly bounded in
L∞ and moreover, since the restriction of f and g to Σ are Lipschitz continu-
ous, it has an infinite lifetime T = +∞.
The second method is detailed here because it provides uniform L∞ bounds
and is really perfectly suited to the numerical analysis below. It requires

• a good behaviour of the non-linear terms f and g, so that invariant sets
exist, see figure 1,

• a strong maximum principle for the operator u 7→ div(σ∇u),

• regular solutions in order to apply the maximum principle.

Invariant regions for (10)-(13) are built by considering invariant regions of
R

2 for the reactive flow (u, v) ∈ R
2 7→ (f(u, v), g(u, v)) ∈ R

2. For the heat
equation ∂tu = div(σ∇u), intervals [u−, u+] are invariant regions. As a conse-
quence, invariant sets Σ are searched in the following form:

Σ = {(u, v) ∈ R
2, u− ≤ u ≤ u+, v− ≤ v ≤ v+} = [u−, u+]× [v−, v+]. (14)


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Definition 1 (Rectangular Invariant Set). The rectangular subset of R2, Σ =
[u−, u+]× [v−, v+] is an invariant set for f and g if

∀ (u, v) ∈ Σ,

∣
∣
∣
∣
∣
∣
∣
∣

u = u−, v− ≤ v ≤ v+ ⇒ f(u, v) > 0,
u = u+, v− ≤ v ≤ v+ ⇒ f(u, v) < 0,
v = v−, u− ≤ u ≤ u+ ⇒ g(u, v) > 0,
v = v+, u− ≤ u ≤ u+ ⇒ g(u, v) < 0.

For an invariant rectangular region Σ (def. 1) to be invariant for (10)-(13),
a strong point wise maximum principle is needed here. Remark that a sim-
plification occurs in the scalar case (with one equation) where a Stampacchia-
troncature technique can be used (see [4]).

Lemma 3 (Strong Maximum Principle). Let Ω be an open bounded subset of
R

d whose boundary ∂Ω has C2 regularity. Let u ∈ C2(Ω) satisfy the boundary
condition (12) for a tensor σ ∈ C1(Ω) satisfying the boundary condition (4).

If u has a maximum (resp. minimum) for x ∈ Ω then div(σ∇u)(x) ≤ 0
(resp. div(σ∇u)(x) ≥ 0).

With lemma 3 invariant regions according to definition 1 are invariant
regions for regular solutions of the PDE.

Theorem 1 (Invariant set for the PDE). Consider the system of equations
(10)-(13) with the assumptions of lemma 2. Moreover, assume that the con-
ductivity tensor σ verifies the boundary condition (4).
If Σ is a rectangular invariant set for f and g, according to definition 1, then
it is an invariant region for (10)-(12):

∀ x ∈ Ω, w0(x) ∈ int(Σ) ⇒ ∀ t > 0, ∀ x ∈ Ω, w(x, t) ∈ Σ.

and thus such a solution w has an infinite lifetime T = +∞.

Remark 1. For σ = λId, a proof has been given by J. Smoller in [24] when
assuming that the boundary values of the solution (u, v)|∂Ω, which are unknown
here, remains inside Σ; and by A. Shcherbakov in [23] for a homogeneous
Neumann boundary condition in the case of the FHN model (8). Lemma 3 and
theorem 1 extend these results to the general case (10)-(12) for an anisotropic
conductivity tensor satisfying (4).

Examples of invariant regions for the FHN or AP models (8), (9) are
displayed on figure 1. Note that these invariant regions may be built as big as
wishes, so that any regular solution of (10)-(12) remains uniformly bounded
for all time t ≥ 0.

Proof of lemma 3. At an interior point x ∈ Ω it is obvious. Assume that u has
a maximum for x ∈ ∂Ω. With condition (4) one can construct an orthonormal
basis B = (ξ1, . . . , ξd) such that σ(x) = diag(λ1, . . . , λd) in B (with λi ≥ 0,
i = 1, . . . , d) and such that ξ1 is normal to ∂Ω at x. Condition (12) together
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1a

u

v

Σ

g(u, v) = 0

f(u, v) = 0

a

u

v

a+ 1

1

Σ

f(u, v) = 0
g(u, v) = 0

Figure 1: Invariant regions Σ for FHN (left) and AP (right) models

with (4) gives ∂ξ1u(x) = 0. The family (ξ2, . . . , ξd) generates the tangent hyper-
surface of ∂Ω at point x. Since u is C2(∂Ω) and its restriction to ∂Ω also has
a local maximum at x, we have ∂ξiu(x) = 0 for i = 2, . . . , d. Consequently,
u ∈ C2(Ω) has a maximum in x implies that ∂2

ξi
u(x) ≤ 0 (i = 1, . . . , d). Now

since σ ∈ C1(Ω) one has div(σ∇u)(x) = λ1∂
2
ξ1
u(x) + . . .+ λd∂

2
ξd
u(x) ≤ 0.

Proof of theorem 1. With the assumptions of lemma 2, let w = (u, v) be a
solution of (10)-(12) with initial value w(0, ·) such that w(0, x) ∈ int(Σ) for
all x ∈ Ω. We recall that u is C2(Ω) with respect to x and that w is C1 with
respect to t on Ω× (0, T ).
Imagine that w(x, t) reaches the boundary ∂Σ of Σ at time t0 and that w(x, t) ∈
Σ for all t ≤ t0. Since w(t) : [0, T ) 7→ L∞(Ω) × L∞(Ω) is continuous, t0 > 0.
Let x0 ∈ Ω be such that w(x0, t0) ∈ ∂Σ.
We first assume that w(x0, t0) is on the right side of ∂Σ: u(x0, t0) = u+ and
v− ≤ v(x0, t0) ≤ v+. On one hand, definition 1 implies that f(w(x0, t0)) < 0;
and on the other hand u(·, t0) satisfies the conditions of the lemma 3 and
u(x0, t0) = maxΩ u(·, t0). As a consequence, div(σ∇u)(x0, t0) ≤ 0. It proves
that ∂tu(x0, t0) < 0. The function ∂tu being continuous on Ω × (0, T ), there
exists a neighbourhood U of (x0, t0) in Ω× (t0, T ) such that ∂tu < 0 on U , and
therefore u(x, t) < maxΩ u(·, t0) = u+ on U .
Now imagine that w(x, t) is on the top side of Σ: v(x0, t0) = v+ and u− ≤
u(x0, t0) ≤ u+ , then since g < 0 on that top side, ∂tv(x0, t0) < 0 too and so
there exists a neighbourhood U of (x0, t0) in Ω× (t0, T ) such that v(x, t) < v+
on U .
Altogether w cannot get out of Σ even at a corner point where the two prece-
dent reasons both hold.
To end, w remaining uniformly bounded, the reaction terms f and g can
be considered as uniformly Lipschitz continuous and with the last remark of
lemma 1 w has an infinite lifetime T = +∞.


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2 The finite volume approximation

2.1 Meshes, spaces and notations

We shall approximate the solutions of system (10)-(12) with a finite volume
method according to the framework of [6], on admissible meshes adapted to
the conductivity tensor σ. An admissible mesh of Ω (a bounded open subset
of Rd whose boundary is piecewise C1) adapted to σ is given by:

1. a set T of polygonal connected open subsets of Ω, called cells and denoted
by K, such that

Ω = ∪K∈T K, ∀ K,L ∈ T , K 6= L ⇒ K ∩ L = ∅.

In the following m(K) will stand for the measure of a cell K ∈ T . For a
cell K ∈ T lying on the boundary, the edge K∩∂Ω might be a C1 curve,
allowing non polygonal domains Σ. Two distinct cells K and L ∈ T
are called neighbour cells if K ∩ L has a non zero (d − 1)-dimensional
measure (i.e. non zero surface if d = 3 or non zero length if d = 2). On
each cell K ∈ T a (positive definite) conductivity tensor σK ∈ M

d×d is
defined by

∀ K ∈ T , σK =
1

m(K)

∫

σ(x) dx. (15)

2. A set S of interfaces, denoted by e that are of two types:

• either there exists two neighbour cellsK,L ∈ T such that e = K∩L,
e is an internal interface and we set e = K|L;

• or there exists one cell K ∈ T such that K ∩ ∂Ω has a non zero
(d − 1)-dimensional measure and such that e = K ∩ ∂Ω, e is an
external interface.

The set of internal interfaces is denoted by S⋆ and the set of external
interfaces by δS, and so S = S⋆ ∪ δS. The (d− 1)-dimensional measure
for e ∈ S is m(e) and it is non zero. For e ∈ S and K ∈ T such that
e ⊂ ∂K we denote by nK,e the unit vector normal to e and pointing
outward of K.

3. Two sets of points X = (xK)K∈T , Y = (ye)e∈X , called cells and interfaces
centers and such that xK ∈ K, ye ∈ e. We furthermore assume that for
each cell K ∈ T and each interface e ∈ S such that e ⊂ ∂K,

ye − xK is co-linear to σKnK,e. (16)

We denote by dK,e the euclidean distance |ye − xK | and by λK,e the
(positive) proportionality coefficient between σKnK,e and the unit vector
(ye − xK)/dK,e:

σKnK,e = λK,e
ye − xK

dK,e

, and λK,e > 0. (17)


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Additionally, the boundary ∂K of any cell K ∈ T can be spitted into internal
and external interfaces, and we denote by δK, δK⋆, the subsets of S such that

⋃

e∈δK

e = ∂K,
⋃

e∈δK⋆

e = ∂K ∩ Ω.

We also define the size of the mesh as the maximum of the cells’ diameters,

size(T ) = max
K∈T

diam (K) . (18)

As a consequence, a mesh is described by the collection (T ,S,X ,Y), but will
be referred to as T .
Examples of such meshes are given in [6]. In the isotropic case they are 2D
meshes of triangles or 3D meshes of tetrahedra in which the centers xK are
the centers of the circumscribed circles or spheres of the cells K, and more
generally Voronöı meshes.

On an admissible mesh T , the finite volume approximation for the solution of
(10)-(11) is a couple of functions wT = (uT , vT ) piecewise constant on the cells
K ∈ T . As a consequence, we define

L2(T ) =

{

uT =
∑

K∈T

uKχK , (uK)K∈T ∈ R
NT

}

⊂ L2(Ω), (19)

where NT is the cardinal of T , and χK(x) = 1 for x in K and 0 elsewhere. The
space L2(T ) is naturally handled with the inner product induced by L2(Ω) and
the associated norm:

(uT , vT )L2 =
∑

K∈T

uKvKm(K) , ‖uT ‖
2
L2 =

∑

K∈T

|uK |
2m(K) . (20)

This euclidean structure is extended to L2(T ) × L2(T ). For w = (u, v) and
ŵ = (û, v̂) we have

(w, ŵ)L2 = (u, û)L2 + (v, v̂)L2 , ‖w‖2L2 = ‖u‖2L2 + ‖v‖2L2 . (21)

2.2 Space discretization

In order to construct the finite volume approximation of system (10)-(11), the
balance equation is written on any cell K:

ε
d

dt

∫

K

u dx = ε2
∫

∂K

σ∇u · nK ds+

∫

K

f(u, v) dx, (22)

d

dt

∫

K

v dx =

∫

K

g(u, v) dx. (23)
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Suppose that each value uK , vK of the discrete solution approximates the mean
value on K of the exact solution (u, v), then the discrete solution shall satisfy
the following semi-discrete equation:

ε
duK

dt
(t) =

ε2

m(K)

∑

e∈δK

ϕK,e(uT )m(e) + fK(uT , vT ), (24)

dvK
dt

(t) = gK(uT , vT ). (25)

The terms fK(uT , vT ) and gK(uT , vT ) shall approximate 1
m(K)

∫

K
f(u, v) dx and

1
m(K)

∫

K
g(u, v) dx and are taken as follows:

fK(uT , vT ) = f(uK , vK), gK(uT , vT ) = g(uK , vK). (26)

The term ϕK,e(uT ) approximates the mean flux along e ∈ S outward of K,
specifically 1

m(e)

∫

e
(σ∇u) ·nK ds. On the external interfaces the boundary con-

dition (12) on u is taken into account by fixing ϕK,e = 0. On the internal
interfaces we approximate the flux as follows:

1

m(e)

∫

e

(σ∇u) · nK ds ≃ ∇u(ye) · (σKnK,e) = λK,e∇u(ye) ·
ye − xK

dK,e

.

An approximation of the derivative∇u(ye)·
ye−xK

dK,e
of u at point ye is established

by adding auxiliary unknowns (ue)e∈S at each point (ye)e∈S :

∇u(ye) ·
ye − xK

dK,e

≃
ue − uK

dK,e

.

An additional requirement is that the numerical fluxes satisfy the conservativ-
ity property,

∀ e = K|L ∈ S⋆, ϕK,e = −ϕL,e. (27)

This property enables us to determine the additional unknowns ue and to
compute the numerical fluxes on the internal interfaces:

∀ e = K|L ∈ S⋆, ϕK,e = τe (uL − uK) , (28)

where

τe =
λK,eλL,e

λK,edL,e + λL,edK,e

m(e) > 0. (29)

The resulting approximation of the fluxes is consistent, as shown in [6].
Consequently, the semi-discrete finite volume formulation is:

ε
duK

dt
(t) =

ε2

m(K)

∑

e=K|L∈δK⋆

τe(uL − uK) + f(uK , vK), (30)

dvK
dt

(t) = g(uK , vK). (31)
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We recall that in (30)-(31) the boundary condition (12) is taken into account
by fixing ϕK,e = 0 on the external interfaces. The most natural initial data is
given for all K ∈ T by wK(0) = w0(xK), or wK(0) =

1
m(K)

∫

K
w0(x) dx. The

discrete operator AT defined on L2(T ) by

AT : uT ∈ L2(T ) 7→ zT ∈ L2(T ), zK =
1

m(K)

∑

e=K|L∈δK⋆

τe(uL − uK) (32)

approximates the continuous elliptic operator u 7→ div(σ∇u). Finally, the
semi-discrete system of ODEs simply writes

ε
duT

dt
(t) = ε2AT uT + f(uT , vT ), (33)

dvT
dt

(t) = g(uT , vT ). (34)

The operator AT is symmetric on L2(T ) and verifies:

(AT uT , uT )L2(Ω) = −
∑

e=K|L∈S⋆

τe |uL − uK |
2 . (35)

Therefore AT is non-negative and its kernel is the subspace of the constant
functions on Ω, and define the following semi-norm on L2(T ),

|uT |
2
1,T = −(AT uT , uT )L2 =

∑

e=K|L∈S⋆

τe |uL − uK |
2 . (36)

With this semi-norm the space of the finite volume functions will be referred
to as H1(T ). Unlike in the case of a finite element Galerkin formulation, the
space H1(T ) is not a subspace of H1(Ω) but only a discrete equivalent.

2.3 Time-stepping methods

Given an admissible finite volume mesh as defined in section 2.1, we choose a
time step ∆t > 0 and consider the forward Euler method:

ε
un+1
T − un

T

∆t
= ε2AT u

n
T + f(un

T , v
n
T ), (37)

vn+1
T − vnT

∆t
= g(un

T , v
n
T ), (38)

and the backward Euler method:

ε
un+1
T − un

T

∆t
= ε2AT u

n+1
T + f(un

T , v
n
T ), (39)

vn+1
T − vnT

∆t
= g(un

T , v
n
T ). (40)
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3 Stability analysis

As explained in section 1.3, any regular solution initially in a contracting rect-
angle Σ (def. 1) exists for all time t ≥ 0 and remains trapped in Σ. We shall
prove in this section that

1. the semi-discrete solutions of the ODEs (33)-(34) initially in Σ exist
for all t > 0 and remain trapped in Σ as well, without any additional
regularity assumption on the mesh;

2. the discrete solutions given by (37)-(38) or (39)-(40) initially in Σ are
well-defined for all n ≥ 0 and remain trapped in Σ as well, under classical
conditions on the time step ∆t.

Item (1) justifies the choice of a finite volume method, and proves that numeri-
cal instability are only caused by the time-stepping method. The ∆t conditions
in item (2) splits into constraints due to the discrete elliptic operator AT and
the non-linear source terms fK , gK .
The balance between these constraints is ruled by the ratio of the mesh size
size(T ) to the time-scale factor ε, showing up the main question of the dis-
cretization: how should the mesh and the time step be chosen with respect to
the value of ε and the desired accuracy ?
We recall that invariant regions can be built as big as one wishes (see figure
1) so that any solution of (10)-(12) associated with a bounded initial data can
be approximated with numerical stability.

3.1 Stability for the semi-discrete problem

Given any initial data w0
T ∈ L2(T )×L2(T ), the system of ODEs (33)-(34) has

a unique solution w ∈ C1([0, T ); L2(T ) × L2(T )), for some T > 0, because f
and g are locally Lipschitz on R

2.

Proposition 1. Let Σ ⊂ R
2 be a rectangular invariant set (def. 1). Then Σ

is an invariant region for the semi discrete system (33)-(34):

∀ K ∈ T , w0
K ∈ Σ ⇒ ∀ t > 0, ∀ K ∈ T , wK(t) ∈ Σ.

and w has an infinite lifetime T = +∞

The proof of the theorem is supported by the following lemma which is a
discrete analogue of lemma 3.

Lemma 4. Let T be an admissible finite volume mesh of Ω adapted to the
conductivity tensor σ and AT be the operator defined by (32).

If uT has a maximum (resp. minimum) for K ∈ T then {AT uT }K ≤ 0
(resp. {AT uT }K ≥ 0).
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Proof of lemma 4. If uT ∈ L2(T ) has a maximum for K ∈ T then for any cell
L ∈ T neighbouring K one has uK ≥ uL. As a result uL − uK is non-positive
and so {AT uT }K ≤ 0.

Proof of proposition 1. Let Σ be an invariant rectangle and w0 ∈ L2(T ) ×
L2(T ) satisfy w0

K ∈ Σ for all K ∈ T . Consider T > 0 and the solution
w ∈ C1([0, T ]; L2(T )× L2(T )) of (33)-(34) with initial data w0

T .
Assume now that w reaches ∂Σ at time t0 ≥ 0 and that wK(t) ∈ Σ for all
K ∈ T and all t ∈ [0, t0]. Let K ∈ T be such that wK(t0) ∈ ∂Σ.
First assume that wK(t0) is on the right side of ∂Σ: uK(t0) = u+ and v− ≤
vK(t0) ≤ v+. Then, on the one hand definition 1 implies f(wK(t0)) < 0, and on
the other hand maxL∈T uL(t0) = u+ = uK(t0) so that property {AT uT (t0)}K ≤
0 (lemma 4). As a result we have duK/dt(t0) < 0 and so uK(t) < u+ for
t ∈ (t0, t0 + δ) for some δ > 0.
Now if wK(t0) is on the top side of Σ, vK(t0) = v+ and u− ≤ uK(t0) ≤ u+, since
g < 0 on that top side then ∂tvK(t0) < 0 and so vK(t) < v+ for t ∈ (t0, t0 + δ).
Al together, w cannot get out of Σ, even at a corner point where the two
precedent reasons hold. To end, since w remain uniformly bounded it has an
infinite lifetime T = +∞.

3.2 Stability for the semi-implicit Euler method

We recall that the operator AT is non-positive, so that Id − ε∆tAT is sym-
metric and positive-definite for any ∆t > 0. As a consequence, given (un

T , v
n
T ),

equation (39) has a unique solution; and for any w0
T , equations (39)-(40) define

a unique sequence (wn
T )n∈N in L2(T )× L2(T ).

The following corollary gives a condition on ∆t for wn
T to remain in Σ if w0

T ∈ Σ.

Corollary 1. Let Σ be a rectangular invariant set (def 1). If the time step ∆t
verifies

∆t

ε

∣
∣
∣min

Σ
∂uf
∣
∣
∣ ≤ 1, ∆t

∣
∣
∣min

Σ
∂vg
∣
∣
∣ ≤ 1, (41)

then Σ is an invariant region for the solution (wn
T )n∈N of (39)-(40):

∀ K ∈ T , w0
K ∈ Σ ⇒ ∀ n ∈ N, ∀ K ∈ T , wn

K ∈ Σ.

Remark 2. Condition (41) can be specified with F (u) = −u(u− a)(u− 1):

• for the FHN model (8), we have

|min
Σ

∂uf | = max(|F ′(u−)|, |F
′(u+)|), |min

Σ
∂vg| = 1,

• for the AP model (9), we have

|min
Σ

∂uf | = max(|F ′(u−)− v+|, |F
′(u+)− v+|), |min

Σ
∂vg| = 1.

This yields explicit computations of the time-step in applied cases.





Stability of a finite volume method for the monodomain model

Proof. Equations (39)-(40) can be rewritten as

(Id− ε∆tAT ) u
n+1
T = un

T +∆tf(wn
T )/ε,

vn+1
T = vnT +∆tg(wn

T ),

for all n ∈ N, which has a unique solution (see above).
Let us consider the following function defined on R

2:

ϕ(w) = (ϕ1(w), ϕ2(w)) = (u+∆tf(w)/ε, v +∆tg(w)) .

Under condition (41) one has ∂uϕ1 ≥ 0 and so supΣ ϕ1 = ϕ1(u+, v) = u+ +
∆tf(u+, v)/ε for some v, v− ≤ v ≤ v+. But definition 1 ensures that f(u+, v) <
0 and then supΣ ϕ1 ≤ u+. Similarly, infΣ ϕ1 ≥ u− and v− ≤ infΣ ϕ2 ≤
supΣ ϕ2 ≤ v+. As a consequence, ϕ(Σ) ⊂ Σ.
Now let w0

T ∈ L2(T ) × L2(T ) satisfy w0
K ∈ Σ for all K ∈ T . Since ϕ(Σ) ⊂

Σ we have ({(Id− ε∆tAT ) u
1
T }K , v1K) ∈ Σ for all K ∈ T . If K ∈ T is

such that u1
K = maxL∈T u1

L, then {AT u
1
T }K ≤ 0 (this is lemma 4) and then

{(Id− ε∆tAT ) u
1
T }K ≤ u+ implies that u1

K = maxL∈T u1
L ≤ u+. Similarly,

infL∈T u1
L ≥ u− and so w1

K ∈ Σ for all K ∈ T .

3.3 Stability for the explicit Euler method

Given any w0
T ∈ L2(T )×L2(T ), the discrete system (37)-(38) define explicitly

a unique sequence (wn
T )n∈N in L2(T )× L2(T ).

The following corollary gives a condition on ∆t for wn
T to remain in Σ if w0

T ∈ Σ.

Corollary 2. Let Σ be a rectangular invariant set (def 1). If the time step ∆t
verifies

∀ K ∈ T , ∆t
ε

m(K)

∑

e∈δK⋆

τe +
∆t

ε
| inf

Σ
∂uf | ≤ 1, ∆t

∣
∣
∣min

Σ
∂vg
∣
∣
∣ ≤ 1, (42)

then Σ is an invariant region for the solution (wn
T )n∈N of (37)-(38):

∀ K ∈ T , w0
K ∈ Σ ⇒ ∀ n ∈ N, ∀ K ∈ T , wn

K ∈ Σ.

Remark 3. There is a classical condition of regularity for a family of admis-
sible meshes that is there exist uniform constants α, β > 0 such that

∀ e = K|L ∈ S⋆, α∆x ≤ dK,e + dL,e, ∀ K ∈ T , ∆xm(∂K) ≤ βm(K) ,

where ∆x is the size of the mesh T . For such a family of admissible meshes,
and in the isotropic case div(σ∇u) = D∆(u), the first stability condition (42)
becomes

εD
∆t

∆x2

β

α
+

∆t

ε
| inf

Σ
∂uf | ≤ 1.

This condition combines the classical stability conditions for both the heat
equation u′ = D∆(u) and the ordinary differential equation u′ = f(u).
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Proof. Equations (37)-(38) can be rewritten as:

un+1
T = (Id + ε∆tAT ) u

n
T +

∆t

ε
f(wn

T ),

vn+1
T = vnT +∆tg(wn

T ).

Let w0
T ∈ L2(T )× L2(T ) satisfy w0

K ∈ Σ for all K ∈ T . For any K ∈ T ,

ϕ−(w0
K) ≤ u1

K ≤ ϕ+(w0
K),

where the two functions ϕ− and ϕ+ are defined by

ϕ−(w) = u+
ε∆t

m(K)

∑

e∈δK⋆

τe(u− − u) +
∆t

ε
f(w),

ϕ+(w) = u+
ε∆t

m(K)

∑

e∈δK⋆

τe(u+ − u) +
∆t

ε
f(w).

The stability condition (42) implies that ∂uϕ
− ≥ 0 and ∂uϕ

+ ≥ 0 on Σ, and
then,

u− +∆tf(u−, v
0
K) ≤ u1

K ≤ u+ +∆tf(u+, v
0
K).

At last, Σ being an invariant rectangle (def. 1), f(u−, v
0
K) > 0 and f(u+, v

0
K) <

0. As a consequence, u− ≤ u1
K ≤ u+. Similarly we have v− ≤ v1K ≤ v+ and at

last, w1
K ∈ Σ for all K ∈ T .

4 Convergence analysis

Convergence of the finite volume approximations and error estimates are proved
in this section.
The functions f , g are supposed to be those of the FHN or AP model, and
the other data Ω, σ, w0 = (u0, v0) are supposed to fulfill the assumptions of
lemma 2 and theorem 1, in order for the solution w(t) to exists for all t > 0 in
a fixed rectangle Σ, depending only on w0. In this case, the solution w(x, t) is
C2(Ω) with respect to x and C1([0,+∞)) with respect to t.
Given an admissible finite volume mesh as defined in section 2.1, and ∆t > 0,
we denote by (wn

T )n∈N the sequence defined by (39)-(40) or (37)-(38) and
w0

K = w0(xK) for all K ∈ T .
Under the condition (41) or (42), both w and wn

T remain in Σ. In order to
compare the discrete and the continuous solutions we introduce the sequence
(wn

T )n∈N in L2(T )× L2(T ) defined by

wn
K = w(xK , t

n) = (u(xK , t
n), v(xK , t

n)) . (43)

The error (enT )n∈N writes

enT = wn
T − wn

T ∈ L2(T )× L2(T ). (44)
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Corollary 3 (Convergence and error estimate). Suppose that the data fulfill
the assumptions of lemma 2 and theorem 1. Assume furthermore that Σ ⊂ R

2

is an invariant rectangle (def. 1) for f and g such that the initial data w0 is
in Σ’s interior.
We additionally assume that ∂tw and the second order derivatives in space
∂2
ξi
u of u are uniformly bounded on Ω× (0, T ].

Let wn
T be the approximation of w as defined by (37)-(38) (or in (39)-(40))

with the initial data

∀ K ∈ T , w0
K = w0(xK) = (u0(xK), v0(xK)). (45)

If the stability condition (41) (or (42)) relative to Σ is satisfied, then there
exists two constants C and µ, only depending on the data (Ω, w0, f , g and Σ)
such that for n∆t ≤ T the error is

‖enT ‖L2 ≤ CeµT (size(T ) + ∆t).

Proof. We shall prove theorem 3 for the Euler semi implicit scheme (37)-(38),
the proof being similar for the Euler semi explicit scheme (39)-(40). For sim-
plicity we shall also take ε = 1. With the notations previously defined, the
balance equation at time tn+1 for (10)-(12) on any cell K ∈ T reads:

d

dt

∫

K

u(x, tn+1) dx =

∫

∂K∩Ω

σ∇u(x, tn+1)) · nK ds+

∫

K

f(w(x, tn+1)) dx

d

dt

∫

K

v(x, tn+1) dx =

∫

K

g(w(x, tn+1)) dx.

together with definition (43) this leads to:

un+1
K − un

K

∆t
+ T 1,n

K = {AT u
n+1
T }K +

1

m(K)

∑

e∈δK⋆

F n
e,K + f(wn

K) +R1,n
K (46)

vn+1
K − vnK

∆t
+ T 2,n

K = g(wn
K) +R2,n

K , (47)

where:
• F n

e,K stands for the consistence error on the numerical approximation of
the flux

∫

e
σ∇u · nK,e on the edge e ∈ δK⋆:

∫

e

σ(x)∇u(x, tn+1) · nK ds = τe(u
n+1
L − un+1

K ) + F n
e,Km(e) ,

F n
eK fulfills the following conservativity property:

∀ e = K|L ∈ S⋆ , F n
e,K = −F n

e,L , (48)

and since u is assumed to have uniformly bounded second order derivatives on
Ω× (0, T ] it is controlled by the size of the mesh (see [6]):

|F n
e,K | ≤ Cw,σsize(T ) , (49)
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(where Cα generically denotes a constant depending on the data α only).
• T n

K = (T 1,n
K , T 2,n

K ) stands for the consistence error on the time integration:

1

m(K)

∫

K

∂tw(x, tn+1) dx =
wn+1

K − wn
K

∆t
+ T n

K

which is of order one since ∂tw is uniformly bounded on Ω× (0, T ]:

|T n
K | ≤ Cw (size(T ) + ∆t) . (50)

We shall consider T n
T as a finite volume function T n

T ∈ L2(T )× L2(T ).
• Rn

K = (R1,n
K , R2,n

K ) is the consistence error on the reaction term, for F =
(f, g):

1

m(K)

∫

K

F (w(x, tn+1)) dx = F (wn+1
K ) +Rn

K .

Since w remains bounded (inside Σ) and f , g are locally Lipschitz, it is of
order one:

|Rn
K | ≤ Cw,f,g,Σsize(T ) . (51)

Again we shall consider Rn
T as a finite volume function Rn

T ∈ L2(T )× L2(T ).
Now, subtracting (39)- (40) to (46)-(47), the error enT defined in (44) satisfies
the following equation:

e1,n+1
K − e1,nK

∆t
+ T 1,n

K = {AT e
1,n+1
T }K +

1

m(K)

∑

e∈δK⋆

F n
e,Km(e) + (f(wn

K)− f(wn
K)) +R1,n

K

e2,n+1
K − e2,nK

∆t
+ T 2,n

K = g(wn
K)− g(wn

K) +R2,n
K , (52)

multiplying the first equation by m(K) e1,n+1
K and summing over all cellsK ∈ T

leads to, by making use of the inner product (20), of the discrete H1 semi-
norm (36) and of the formula (35):

1

∆t

(
e1,n+1
T , e1,n+1

T − e1,nT

)

L2
+ |e1,n+1

T |21,T =
(
e1,n+1
T , R1,n

T − T 1,n
T

)

L2

+
(
e1,n+1
T , f(wn

T )− f(wn
T )
)

L2
(53)

+
∑

K∈T

e1,n+1
K

∑

e∈δK⋆

F n
e,Km(e)

First of all, since the restriction to Σ of f is Lipschitz continuous, there is a
constant Λf,Σ such that: ‖f(wn

T ) − f(wn
T )‖L2 ≤ Λ‖enT ‖L2 . Then, by making

use of the Schwartz inequality:
∣
∣
(
e1,n+1
T , f(wn

T )− f(wn
T )
)

L2

∣
∣ ≤ Λ‖enT ‖L2‖e1,n+1

T ‖L2 ,

with the Schwartz inequality again:
∣
∣
(
e1,n+1
T , e1,nT

)

L2

∣
∣ ≤ ‖e1,n+1

T ‖L2‖enT ‖L2

∣
∣
(
e1,n+1
T , R1,n

T − T 1,n
T

)∣
∣

≤ (‖Rn
T ‖L2 + ‖T n

T ‖L2)
︸ ︷︷ ︸

≤Cw,Ω,f,g,Σ(∆t+size(T ))

‖e1,n+1
T ‖L2 .
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The conservativity (48) of F n
K,e reads:

∣
∣
∣
∣
∣

∑

K∈T

e1,n+1
K

∑

e∈δK⋆

F n
e,Km(e)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∑

e=K|L∈S⋆

F n
e,K(e

1,n+1
K − e1,n+1

L )m(e)

∣
∣
∣
∣
∣
∣

≤ |e1,n+1
T |1,T

(
∑

e∈S⋆

|F n
e |

2m(e)2 /τe

)1/2

︸ ︷︷ ︸

≤Cwsize(T )
∑

e∈S⋆ m(e)2/τe

.

the conductivity tensor being uniformly elliptic on Ω,
∑

e∈S⋆ m(e)2 /τe ≤ Cσm(Ω),
where m(Ω) is the measure of the domain Ω. Altogether with equation (53)
these upper bounds lead to:

1

∆t
‖e1,n+1

T ‖2L2 + |e1,n+1
T |21,T ≤ (Λ +

1

∆t
)‖e1,n+1

T ‖L2‖enT ‖L2

+ C(size(T ) + ∆t)
(
‖e1,n+1

T ‖L2 + |e1,n+1
T |1,T

)
,

and using Young’s inequalities for the three terms on right hand side writes:

‖e1,n+1
T ‖2L2 ≤

(1 + Λ∆t)2

1−∆t
‖enT ‖

2
L2 + C (size(T ) + ∆t)2 ∆t

Using the same process on (52) gives the same upper bound on ‖e2,n+1
T ‖2L2 and

so, if (n+ 1)∆t ≤ T one has:

‖en+1
T ‖2L2 ≤ eµT

(
‖e0T ‖

2
L2 + C (size(T ) + ∆t)2

)

for some constant µ related with Λ, which ends the proof for theorem 3.
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